424 research outputs found

    Objeto virtual de aprendizaje para la concientización frente a los fenómenos naturales o antrópicos que se suscitan en el departamento de Nariño

    Get PDF
    La prevención y atención de desastres es una temática de interés general. En el caso particular del departamento de Nariño son diversas las amenazas a las cuales se encuentra expuesto cada uno de los municipios que lo conforman; por ello, es de gran importancia la implementación de nuevos elementos que contribuyan al conocimiento de los fenómenos que causan estas amenazas, para así contribuir en la gestión del riesgo en toda la comunidad, principalmente en la que se encuentra más vulnerable

    Remote participation during glycosylation reactions of galactose building blocks: Direct evidence from cryogenic vibrational spectroscopy

    Get PDF
    The stereoselective formation of 1,2‐cis‐glycosidic bonds is challenging. However, 1,2‐cis‐selectivity can be induced by remote participation of C4 or C6 ester groups. Reactions involving remote participation are believed to proceed via a key ionic intermediate, the glycosyl cation. Although mechanistic pathways were postulated many years ago, the structure of the reaction intermediates remained elusive owing to their short‐lived nature. Herein, we unravel the structure of glycosyl cations involved in remote participation reactions via cryogenic vibrational spectroscopy and first principles theory. Acetyl groups at C4 ensure α‐selective galactosylations by forming a covalent bond to the anomeric carbon in dioxolenium‐type ions. Unexpectedly, also benzyl ether protecting groups can engage in remote participation and promote the stereoselective formation of 1,2‐cis‐glycosidic bonds

    Exploring the Cosmic Evolution of Habitability with Galaxy Merger Trees

    Get PDF
    We combine inferred galaxy properties from a semi-analytic galaxy evolution model incorporating dark matter halo merger trees with new estimates of supernova and gamma ray burst rates as a function of metallicity from stellar population synthesis models incorporating binary interactions. We use these to explore the stellar mass fraction of galaxies irradiated by energetic astrophysical transients and its evolution over cosmic time, and thus the fraction which is potentially habitable by life like our own. We find that 18 per cent of the stellar mass in the Universe is likely to have been irradiated within the last 260 Myr, with GRBs dominating that fraction. We do not see a strong dependence of irradiated stellar mass fraction on stellar mass or richness of the galaxy environment. We consider a representative merger tree as a Local Group analogue, and find that there are galaxies at all masses which have retained a high habitable fraction (>40 per cent) over the last 6 Gyr, but also that there are galaxies at all masses where the merger history and associated star formation have rendered galaxies effectively uninhabitable. This illustrates the need to consider detailed merger trees when evaluating the cosmic evolution of habitability.Comment: 11 page, 10 figures. MNRAS accepted 13th Dec 2017. Updated to match accepted version, with additional discussion of metallicity effect

    Binary Population and Spectral Synthesis Version 2.1: construction, observational verification and new results

    Get PDF
    The Binary Population and Spectral Synthesis (BPASS) suite of binary stellar evolution models and synthetic stellar populations provides a framework for the physically motivated analysis of both the integrated light from distant stellar populations and the detailed properties of those nearby. We present a new version 2.1 data release of these models, detailing the methodology by which BPASS incorporates binary mass transfer and its effect on stellar evolution pathways, as well as the construction of simple stellar populations. We demonstrate key tests of the latest BPASS model suite demonstrating its ability to reproduce the colours and derived properties of resolved stellar populations, including well- constrained eclipsing binaries. We consider observational constraints on the ratio of massive star types and the distribution of stellar remnant masses. We describe the identification of supernova progenitors in our models, and demonstrate a good agreement to the properties of observed progenitors. We also test our models against photometric and spectroscopic observations of unresolved stellar populations, both in the local and distant Universe, finding that binary models provide a self-consistent explanation for observed galaxy properties across a broad redshift range. Finally, we carefully describe the limitations of our models, and areas where we expect to see significant improvement in future versions.Comment: 69 pages, 45 figures. Accepted for publication in PASA. Accompanied by a full, documented data release at http://bpass.auckland.ac.nz and http://warwick.ac.uk/bpas

    Fan Assessment Numeration System (FANS) Design and Calibration Specifications

    Get PDF
    A device for in-situ fan airflow measurement, called the Fan Assessment Numeration System (FANS) device, previously developed and constructed at the USDA-ARS Southern Poultry Research Laboratory, was refined at University of Kentucky as part of a project for quantifying building emissions from poultry and livestock operations. The FANS incorporates an array of five propeller anemometers to perform a real-time traverse of the air flow entering fans of up to 137 cm (54 in) diameter. Details of the updated design, including hardware, software, and calibration methodology are presented. An error analysis of the flow rate, and calibration results from ten units recently manufactured, is provided. Sufficient details of fabrication and calibration are presented so that interested readers can replicate a FANS for their use. Full design details are provided at www.bae.uky.edu/IFAFS/FANS

    Magnon delocalization in ferromagnetic chains with long-range correlated disorder

    Full text link
    We study one-magnon excitations in a random ferromagnetic Heisenberg chain with long-range correlations in the coupling constant distribution. By employing an exact diagonalization procedure, we compute the localization length of all one-magnon states within the band of allowed energies EE. The random distribution of coupling constants was assumed to have a power spectrum decaying as S(k)1/kαS(k)\propto 1/k^{\alpha}. We found that for α<1\alpha < 1, one-magnon excitations remain exponentially localized with the localization length ξ\xi diverging as 1/E. For α=1\alpha = 1 a faster divergence of ξ\xi is obtained. For any α>1\alpha > 1, a phase of delocalized magnons emerges at the bottom of the band. We characterize the scaling behavior of the localization length on all regimes and relate it with the scaling properties of the long-range correlated exchange coupling distribution.Comment: 7 Pages, 5 figures, to appear in Phys. Rev.

    Mass Spectrometry-Based Techniques to Elucidate the Sugar Code

    Get PDF
    Cells encode information in the sequence of biopolymers, such as nucleic acids, proteins, and glycans. Although glycans are essential to all living organisms, surprisingly little is known about the “sugar code” and the biological roles of these molecules. The reason glycobiology lags behind its counterparts dealing with nucleic acids and proteins lies in the complexity of carbohydrate structures, which renders their analysis extremely challenging. Building blocks that may differ only in the configuration of a single stereocenter, combined with the vast possibilities to connect monosaccharide units, lead to an immense variety of isomers, which poses a formidable challenge to conventional mass spectrometry. In recent years, however, a combination of innovative ion activation methods, commercialization of ion mobility–mass spectrometry, progress in gas-phase ion spectroscopy, and advances in computational chemistry have led to a revolution in mass spectrometry-based glycan analysis. The present review focuses on the above techniques that expanded the traditional glycomics toolkit and provided spectacular insight into the structure of these fascinating biomolecules. To emphasize the specific challenges associated with them, major classes of mammalian glycans are discussed in separate sections. By doing so, we aim to put the spotlight on the most important element of glycobiology: the glycans themselves

    An Asymptotically Optimal Approximation Algorithm for the Travelling Car Renter Problem

    Get PDF
    In the classical Travelling Salesman Problem (TSP), one wants to find a route that visits a set of n cities, such that the total travelled distance is minimum. An often considered generalization is the Travelling Car Renter Problem (CaRS), in which the route is travelled by renting a set of cars and the cost to travel between two given cities depends on the car that is used. The car renter may choose to swap vehicles at any city, but must pay a fee to return the car to its pickup location. This problem appears in logistics and urban transportation when the vehicles can be provided by multiple companies, such as in the tourism sector. In this paper, we consider the case in which the return fee is some fixed number g >= 0, which we call the Uniform CaRS (UCaRS). We show that, already for this version, there is no o(log n)-approximation algorithm unless P = NP. The main contribution is an O(log n)-approximation algorithm for the problem, which is based on the randomized rounding of an exponentially large LP-relaxation
    corecore