564 research outputs found
Сложность алгоритмов криптографической системы Эль–Гамаля и ихэффективность
Objective. - Electrical remodeling as well as atrial contractile dysfunction after the conversion of atrial fibrillation (AF) to sinus rhythm (SR) are mainly caused by a reduction of the inward L-type Ca2+ current (ICaL). We investigated whether the expression of L-type Ca2+-channel subunits was reduced in atrial myocardium of AF patients. Methods. - Right atrial appendages were obtained from patients undergoing coronary artery bypass graft surgery (CAD, n = 35) or mitral valve surgery (MVD, n = 37). Seventeen of the CAD patients and 18 of the MVD patients were in chronic (>3 months) AF, whereas the others were in SR. The protein expression of the L-type Ca2+-channel subunits {alpha}1C and {beta}2 was quantified by western blot analysis. Furthermore, we measured the density of dihydropyridine (DHP)-binding sites of the L-type Ca2+ channel using 3H-PN220-100 as radioligand. Results. - Surprisingly, the {alpha}1C and the {beta}2-subunit expression was not altered in atrial myocardium of AF patients. Also, the DHP-binding site density was unchanged. Conclusion. - The protein expression of the L-type Ca2+-channel subunits {alpha}1C or {beta}2 is not reduced in atrial myocardium of AF patients. Therefore, the reduced ICaL might be due to downregulation of other accessory subunits ({alpha}2{delta}), expression of aberrant subunits, changes in channel trafficking or alterations in channel function
Shortened Modified Look-Locker Inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold
Background
T1 mapping allows direct in-vivo quantitation of microscopic changes in the myocardium, providing new diagnostic insights into cardiac disease. Existing methods require long breath holds that are demanding for many cardiac patients. In this work we propose and validate a novel, clinically applicable, pulse sequence for myocardial T1-mapping that is compatible with typical limits for end-expiration breath-holding in patients.
Materials and methods
The Shortened MOdified Look-Locker Inversion recovery (ShMOLLI) method uses sequential inversion recovery measurements within a single short breath-hold. Full recovery of the longitudinal magnetisation between sequential inversion pulses is not achieved, but conditional interpretation of samples for reconstruction of T1-maps is used to yield accurate measurements, and this algorithm is implemented directly on the scanner. We performed computer simulations for 100 ms<T1 < 2.7 s and heart rates 40-100 bpm followed by phantom validation at 1.5T and 3T. In-vivo myocardial T1-mapping using this method and the previous gold-standard (MOLLI) was performed in 10 healthy volunteers at 1.5T and 3T, 4 volunteers with contrast injection at 1.5T, and 4 patients with recent myocardial infarction (MI) at 3T.
Results
We found good agreement between the average ShMOLLI and MOLLI estimates for T1 < 1200 ms. In contrast to the original method, ShMOLLI showed no dependence on heart rates for long T1 values, with estimates characterized by a constant 4% underestimation for T1 = 800-2700 ms. In-vivo, ShMOLLI measurements required 9.0 ± 1.1 s (MOLLI = 17.6 ± 2.9 s). Average healthy myocardial T1 s by ShMOLLI at 1.5T were 966 ± 48 ms (mean ± SD) and 1166 ± 60 ms at 3T. In MI patients, the T1 in unaffected myocardium (1216 ± 42 ms) was similar to controls at 3T. Ischemically injured myocardium showed increased T1 = 1432 ± 33 ms (p < 0.001). The difference between MI and remote myocardium was estimated 15% larger by ShMOLLI than MOLLI (p < 0.04) which suffers from heart rate dependencies for long T1. The in-vivo variability within ShMOLLI T1-maps was only 14% (1.5T) or 18% (3T) higher than the MOLLI maps, but the MOLLI acquisitions were twice longer than ShMOLLI acquisitions.
Conclusion
ShMOLLI is an efficient method that generates immediate, high-resolution myocardial T1-maps in a short breath-hold with high precision. This technique provides a valuable clinically applicable tool for myocardial tissue characterisation
Multiple Potential Molecular Contributors to Atrial Hypocontractility Caused by Atrial Tachycardia Remodeling in Dogs
Background-Atrial fibrillation impairs atrial contractility, inducing atrial stunning that promotes thromboembolic stroke. Action potential (AP)-prolonging drugs are reported to normalize atrial hypocontractility caused by atrial tachycardia remodeling (ATR). Here, we addressed the role of AP duration (APD) changes in ATR-induced hypocontractility. Methods and Results-ATR (7-day tachypacing) decreased APD (perforated patch recording) by approximate to 50%, atrial contractility (echocardiography, cardiomyocyte video edge detection), and [Ca2+](i) transients. ATR AP waveforms suppressed [Ca2+](i) transients and cell shortening of control cardiomyocytes; whereas control AP waveforms improved [Ca2+](i) transients and cell shortening in ATR cells. However, ATR cardiomyocytes clamped with the same control AP waveform had approximate to 60% smaller [Ca2+](i) transients and cell shortening than control cells. We therefore sought additional mechanisms of contractile impairment. Whole-cell voltage clamp revealed reduced I-CaL; I-CaL inhibition superimposed on ATR APs further suppressed [Ca2+](i) transients in control cells. Confocal microscopy indicated ATR-impaired propagation of the Ca2+ release signal to the cell center in association with loss of t-tubular structures. Myofilament function studies in skinned permeabilized cardiomyocytes showed altered Ca2+ sensitivity and force redevelopment in ATR, possibly due to hypophosphorylation of myosin-binding protein C and myosin light-chain protein 2a (immunoblot). Hypophosphorylation was related to multiple phosphorylation system abnormalities where protein kinase A regulatory subunits were downregulated, whereas autophosphorylation and expression of Ca2+-calmodulin-dependent protein kinase II delta and protein phosphatase 1 activity were enhanced. Recovery of [Ca2+](i) transients and cell shortening occurred in parallel after ATR cessation. Conclusions-Shortening of APD contributes to hypocontractility induced by 1-week ATR but accounts for it only partially. Additional contractility-suppressing mechanisms include I-CaL current reduction, impaired subcellular Ca2+ signal transmission, and altered myofilament function associated with abnormal myosin and myosin-associated protein phosphorylation. The complex mechanistic basis of the atrial hypocontractility associated with AF argues for upstream therapeutic targeting rather than interventions directed toward specific downstream pathophysiological derangements. (Circ Arrhythm Electrophysiol. 2010;3:530-541.
Structure of the TPR Domain of AIP: Lack of Client Protein Interaction with the C-Terminal alpha-7 Helix of the TPR Domain of AIP Is Sufficient for Pituitary Adenoma Predisposition
PMCID: PMC3534021This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Remodelling of human atrial K+ currents but not ion channel expression by chronic β-blockade
Chronic β-adrenoceptor antagonist (β-blocker) treatment in patients is associated with a potentially anti-arrhythmic prolongation of the atrial action potential duration (APD), which may involve remodelling of repolarising K+ currents. The aim of this study was to investigate the effects of chronic β-blockade on transient outward, sustained and inward rectifier K+ currents (ITO, IKSUS and IK1) in human atrial myocytes and on the expression of underlying ion channel subunits. Ion currents were recorded from human right atrial isolated myocytes using the whole-cell-patch clamp technique. Tissue mRNA and protein levels were measured using real time RT-PCR and Western blotting. Chronic β-blockade was associated with a 41% reduction in ITO density: 9.3 ± 0.8 (30 myocytes, 15 patients) vs 15.7 ± 1.1 pA/pF (32, 14), p < 0.05; without affecting its voltage-, time- or rate dependence. IK1 was reduced by 34% at −120 mV (p < 0.05). Neither IKSUS, nor its increase by acute β-stimulation with isoprenaline, was affected by chronic β-blockade. Mathematical modelling suggested that the combination of ITO- and IK1-decrease could result in a 28% increase in APD90. Chronic β-blockade did not alter mRNA or protein expression of the ITO pore-forming subunit, Kv4.3, or mRNA expression of the accessory subunits KChIP2, KChAP, Kvβ1, Kvβ2 or frequenin. There was no reduction in mRNA expression of Kir2.1 or TWIK to account for the reduction in IK1. A reduction in atrial ITO and IK1 associated with chronic β-blocker treatment in patients may contribute to the associated action potential prolongation, and this cannot be explained by a reduction in expression of associated ion channel subunits
Prevalence of Symptomatic Heart Failure with Reduced and with Normal Ejection Fraction in an Elderly General Population-The CARLA Study
Background/Objectives: Chronic heart failure (CHF) is one of the most important public health concerns in the industrialized world having increasing incidence and prevalence. Although there are several studies describing the prevalence of heart failure with reduced ejection fraction (HFREF) and heart failure with normal ejection fraction (HFNEF) in selected populations, there are few data regarding the prevalence and the determinants of symptomatic heart failure in the general population. Methods: Cross-sectional data of a population-based German sample (1,779 subjects aged 45-83 years) were analyzed to determine the prevalence and determinants of chronic SHF and HFNEF defined according to the European Society of Cardiology using symptoms, echocardiography and serum NT-proBNP. Prevalence was age-standardized to the German population as of December 31st, 2005. Results: The overall age-standardized prevalence of symptomatic CHF was 7.7% (95%CI 6.0-9.8) for men and 9.0% (95%CI 7.0-11.5) for women. The prevalence of CHF strongly increased with age from 3.0% among 45-54- year-old subjects to 22.0% among 75-83- year-old subjects. Symptomatic HFREF could be shown in 48% (n = 78), symptomatic HFNEF in 52% (n = 85) of subjects with CHF. The age-standardized prevalence of HFREF was 3.8 % (95%CI 2.4-5.8) for women and 4.6 % (95%CI 3.6-6.3) for men. The age-standardized prevalence of HFNEF for women and men was 5.1 % (95%CI 3.8-7.0) and 3.0 % (95%CI 2.1-4.5), respectively. Persons with CHF were more likely to have hypertension (PR = 3.4; 95%CI 1.6-7.3) or to have had a previous myocardial infarction (PR = 2.5, 95%CI 1.8-3.5). Conclusion: The prevalence of symptomatic CHF appears high in this population compared with other studies. While more women were affected by HFNEF than men, more male subjects suffered from HFREF. The high prevalence of symptomatic CHF seems likely to be mainly due to the high prevalence of cardiovascular risk factors in this population
Understanding cult membership: beyond “Drinking the Kool-Aid”
While there is a plethora of research discussing the concepts of social psychology that are
involved in cult membership, which explain that the people involved with cults are typical
individuals and there are many basic factors that contribute to their involvement, public
perception of cults and their members still seems to be deeply negative. It is possible that if these
studies were more widely acknowledged, public perception of cult members would become less
negative. Examining the psychology behind cult membership can shed light on the many factors
that influence human behavior, which may make it easier for the public to understand how cults
can be appealing. Fundamental concepts of social psychology, including affiliation motivation
and the need to belong, persuasion and the factors that are responsible for making it more
effective, cognitive dissonance, ingroup bias, and social identity theory, can be used to explain
how people become involved in cults and why they choose to remain in the group
Theory and Applications of X-ray Standing Waves in Real Crystals
Theoretical aspects of x-ray standing wave method for investigation of the
real structure of crystals are considered in this review paper. Starting from
the general approach of the secondary radiation yield from deformed crystals
this theory is applied to different concreat cases. Various models of deformed
crystals like: bicrystal model, multilayer model, crystals with extended
deformation field are considered in detailes. Peculiarities of x-ray standing
wave behavior in different scattering geometries (Bragg, Laue) are analysed in
detailes. New possibilities to solve the phase problem with x-ray standing wave
method are discussed in the review. General theoretical approaches are
illustrated with a big number of experimental results.Comment: 101 pages, 43 figures, 3 table
Recommended from our members
Surface heat flux estimates from NCAR electra data over the pacific warm pool during TOGA COARE
The warm pool region of the western tropical Pacific is of particular interest to atmospheric dynamics because it represents a significant source of energy to the atmosphere. A better understanding of heat transfer driven by mesoscale and turbulent circulations within this region could lead to improved global circulation models, and therefore to improved prediction of global weather patterns. A first step to this understanding is to evaluate empirical data as well as the methods used to estimate heat transfer, or heat flux, at the surface. Of specific interest here are latent heat flux, the heat transfer associated with evaporation, and sensible heat flux, the heat transfer associated with convection and conduction. In this paper, two different methods of turbulent flux calculation, eddy correlation and the bulk aerodynamic method are compared. Eddy correlation directly uses turbulence measurements to estimate heat flux whereas the bulk aerodynamic method relies on similarity theory to relate heat flux to mean flow quantities. A brief discussion of selection of averaging length based on flight altitude is included, as well as a comparison of errors introduced in averaging velocity as a scalar or as a vector. Errors introduced by averaging, including mesoscale flux enhancement, are evaluated for strong and weak wind cases during relatively light convection in the region. Finally, month to month variability in heat flux is evaluated in an effort to further understand the accuracy of various approximations used in flux calculation
- …
