866 research outputs found
Podcasting as an Effective Pedagogy for Teaching Chemistry During the COVID-19 Pandemic and Beyond
The COVID-19 pandemic has forced all educational institutions worldwide to switch their active routine to ONLINE. With students attending classes virtually, a number of problems arose including the absence of social interaction and the imposed difficulty of digesting the materials of different courses, especially for those with a scientific background. General chemistry (GC), as an introductory course, is usually registered by students from different backgrounds, including Science, Engineering, and Agriculture. At the United Arab Emirates University, the second level of GC (GCII) is more focused on problem-solving as related to various topics. With the absence of face-to-face experience because of the COVID-19 circumstances, students’ understanding of the chemical concepts and implementing that in problem-solving has become a challenge. The current work investigates the effect of using professionally-made podcasts of GCII on the extent of understanding of students registered for this course during the period of 2020-2020 over a course of four semesters. The results of surveying the usage and feedback of students engaged in this experiment are outlined. Conclusively, this pedagogy is fully supported by most of the students who regard it as a suitable alternative to face-to-face settings
Biodegradable Scaffolds for Gastric Tissue Regeneration
Tissue engineering has been viewed as a valid approach toward the partial or total replacement of defective tissues and organs. Recent advances in nanotechnology have made it possible to develop biocompatible materials at the micro- and nano-scales to be used as scaffolds for cellular growth and regeneration of defective tissues. Gastric mucosal lining is an example of soft tissues that are highly susceptible to damage due to various reasons including cancer or ulcer development. Current therapeutic approaches to these diseases have some limitations. This chapter describes the basis for development of a novel modality combining nanotechnology, stem cells, and tissue engineering for the replacement of defective gastric tissues using synthetic biocompatible scaffolds. These microfibrous scaffolds are seeded with gastric stem cells, which are studied for their proliferation and differentiation into functional gastric mucous cells
A combination of sorafenib and nilotinib reduces the growth of castrate-resistant prostate cancer
Castrate-resistant prostate cancer (CRPC) remains incurable due to the lack of effective therapies. Several tyrosine kinases have been implicated in the development and growth of CRPC, as such targeting these kinases may offer an alternative therapeutic strategy. We established the combination of two tyrosine kinase inhibitors (TKIs), sorafenib and nilotinib, as the most cytotoxic. In addtion, to improve their bioavailability and reduce their metabolism, we encapsulated sorafenib and nilotinib into styrene-co-maleic acid micelles. The micelles’ charge, size, and release rate were characterized. We assessed the effect of the combination on the cytotoxicity, cell cycle, apoptosis, protein expression, tumor spheroid integrity, migration, and invasion. The micelles exhibited a mean diameter of 100 nm, a neutral charge, and appeared highly stable. The micellar TKIs promoted greater cytotoxicity, decreased cell proliferation, and increased apoptosis relative to the free TKIs. In addition, the combination reduced the expression and activity of several tyrosine kinases and reduced tumor spheroid integrity and metastatic potential of CRPC cell lines more efficiently than the single treatments. The combination increased the therapeutic potential and demonstrated the relevance of a targeted combination therapy for the treatment of CRPC. In addition, the efficacy of the encapsulated drugs provides the basis for an in vivo preclinical testing
Recommended from our members
Parameters affecting the enhanced permeability and retention effect: the need for patient selection
The enhanced permeability and retention (EPR) effect constitutes the rationale by which nanotechnologies selectively target drugs to tumors. Despite promising pre-clinical and clinical results, these technologies have, in our view, underachieved compared to their potential, possibly due to a suboptimal exploitation of the EPR effect. Here, we have systematically analyzed clinical data to identify key parameters affecting the extent of the EPR effect. An analysis of 17 clinical studies showed that the magnitude of the EPR effect was varied and was influenced by tumor type and size. Pancreatic, colon, breast, and stomach cancers showed the highest levels of accumulation of nanomedicines. Tumor size also had an effect on the accumulation of nanomedicines, with large size tumors having higher accumulation than both medium- and very large- sized tumors. However, medium tumors had the highest percentage of cases (100% of patients) with evidence of the EPR effect. Moreover, tumor perfusion, angiogenesis, inflammation in tumor tissues, and other factors also emerged as additional parameters that might affect the accumulation of nanomedicines into tumors. At the end of the commentary, we propose two strategies for identification of suitable patient sub-populations, with respect to the EPR effect, in order to maximize therapeutic outcome
Adsorption at cell surface and cellular uptake of silica nanoparticles with different surface chemical functionalizations: impact on cytotoxicity
International audienceSilica nanoparticles are particularly interesting for medical applications because of the high inertness and chemical stability of silica material. However, at the nanoscale their innocuousness must be carefully verified before clinical use. The aim of this study was to investigate the in vitro biological toxicity of silica nanoparticles depending on their surface chemical functionalization. To that purpose, three kinds of 50 nm fluorescent silica-based nanoparticles were synthesized: 1) sterically stabilized silica nanoparticles coated with neutral polyethylene glycol (PEG) molecules, 2) positively charged silica nanoparticles coated with amine groups and 3) negatively charged silica nanoparticles coated with carboxylic acid groups. RAW 264.7 murine macrophages were incubated for 20 hours with each kind of nanoparticles. Their cellular uptake and adsorption at the cell membrane were assessed by a fluorimetric assay and cellular responses were evaluated in terms of cytotoxicity, pro-inflammatory factor production and oxidative stress. Results showed that the highly positive charged nanoparticle, were the most adsorbed at cell surface and triggered more cytotoxicity than other nanoparticles types. To conclude, this study clearly demonstrated that silica nanoparticles surface functionalization represents a key parameter in their cellular uptake and biological toxicity
Styrene maleic acid-encapsulated RL71 micelles suppress tumor growth in a murine xenograft model of triple negative breast cancer
Magnetic resonance imaging (MRI) contrast agents for tumor diagnosis
10.1260/2040-2295.4.1.23Journal of Healthcare Engineering4123-4
Preparation, Structural Characterization, and Biomedical Applications of Gypsum-Based Nanocomposite Bone Cements
Hard tissues are natural nanocomposites comprising collagen nanofibers that are interlocked with hydroxyapatite (HAp) nanocrystallites. This mechanical interlocking at the nanoscale provides the unique properties of hard tissues (bone and teeth). Upon fracture, cements are usually used for treatment of simple fractures or as an adhesive for the treatment of complicated fractures that require the use of metallic implants. Most of the commercially available bone cements are polymer-based, and lack the required bioactivity for a successful cementation. Besides calcium phosphate cements, gypsum is one of the early recognized and used biomaterials as a basi for a self-setting cementation. It is based on the controlled hydration of plaster of Paris at room temperature and its subsequent conversion to a self-setting solid gypsum product. In our work, we have taken this process further towards the development of a set of nanocomposites that have enhanced bioactivity and mechanical properties. This chapter will outline the formation, characterization, and properties of gypsum-based nanocomposites for bone cement applications. These modified cements can be formulated at room temperature and have been shown to possess a high degree of bioactivity, and are considered potential candidates for bone fracture and defect treatment
Fabrication and characterization of cellulose acetate-based nanofibers and nanofilms for H2S gas sensing application
Electrospun nanofibers and solution-casting nanofilms were produced from an environmentally friendly cellulose acetate (CA) blended with glycerol (as an ionic liquid (IL)), mixed with polypyrrole (PPy, a conducting polymer) and doped with tungsten oxide (WO3) nanoparticles. The sensing membranes fabricated were used to detect H2S gas at room temperature and shown to exhibit high performance. The results revealed that the lowest operating temperature of both nanofiber and nanofilm sensors was 20oC, with a minimum gas detection limit of 1 ppm. Moreover, the sensor exhibits a reasonably fast response, with a minimum average response time of 22.8 and 31.7 s for the proposed nanofiber and nanofilm based sensors, respectively. Furthermore, the results obtained indicated an excellent reproducibility, long-term stability, and low humidity dependence. Such distinctive properties coupled with an easy fabrication technique provide a promising potential to achieve a precise monitoring of harmful H2S gas in both indoor and outdoor atmospheres
Styrene maleic acid micelles as a nanocarrier system for oral anticancer drug delivery – dual uptake through enterocytes and M-cells
Drug delivery systems could potentially overcome low bioavailability and gastrointestinal toxicity, which are the major challenges for the development of oral anticancer drugs. Herein, we demonstrate the ability of styrene maleic acid (SMA) nanomicelles encapsulating epirubicin to traverse in vitro and ex vivo models of the intestinal epithelium without affecting the tissue integrity. Further, SMA micelles encapsulating a fluorescent dye dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiI) showed twofold higher accumulation in the liver and spleen, 15-fold higher accumulation in the tumor, and sixfold higher accumulation in the lung as compared with the free DiI, following oral administration in a mice xenograft breast cancer model. Additionally, SMA micelles showed colocalization with microfold (M)-cells and accumulation in Peyer’s patches, which together confirms the M-cell mediated uptake and transport of SMA micelles. Our results indicate that SMA micelles, showing dual uptake by enterocytes and M-cells, are a potential tool for safe oral anticancer drug delivery
- …
