214 research outputs found

    Measuring economic inequality and risk: a unifying approach based on personal gambles, societal preferences and references

    Get PDF
    The underlying idea behind the construction of indices of economic inequality is based on measuring deviations of various portions of low incomes from certain references or benchmarks, that could be point measures like population mean or median, or curves like the hypotenuse of the right triangle where every Lorenz curve falls into. In this paper we argue that by appropriately choosing population-based references, called societal references, and distributions of personal positions, called gambles, which are random, we can meaningfully unify classical and contemporary indices of economic inequality, as well as various measures of risk. To illustrate the herein proposed approach, we put forward and explore a risk measure that takes into account the relativity of large risks with respect to small ones.Comment: 29 pages, 4 figure

    Zenga’s new index of economic inequality, its estimation, and an analysis of incomes in Italy

    Get PDF
    For at least a century academics and governmental researchers have been developing measures that would aid them in understanding income distributions, their differences with respect to geographic regions, and changes over time periods. It is a challenging area due to a number of reasons, one of them being the fact that different measures, or indices, are needed to reveal different features of income distributions. Keeping also in mind that the notions of ‘poor’ and ‘rich’ are relative to each other, M. Zenga has recently proposed a new index of economic inequality. The index is remarkably insightful and useful, but deriving statistical inferential results has been a challenge. For example, unlike many other indices, Zenga’s new index does not fall into the classes of L-, U-, and V -statistics. In this paper we derive desired statistical inferential results, explore their performance in a simulation study, and then employ the results to analyze data from the Bank of Italy’s Survey on Household Income and Wealth.Zenga index, lower conditional expectation, upper conditional expectation, confidence interval, Bonferroni curve, Lorenz curve, Vervaat process.

    A robust approach to model-based classification based on trimming and constraints

    Full text link
    In a standard classification framework a set of trustworthy learning data are employed to build a decision rule, with the final aim of classifying unlabelled units belonging to the test set. Therefore, unreliable labelled observations, namely outliers and data with incorrect labels, can strongly undermine the classifier performance, especially if the training size is small. The present work introduces a robust modification to the Model-Based Classification framework, employing impartial trimming and constraints on the ratio between the maximum and the minimum eigenvalue of the group scatter matrices. The proposed method effectively handles noise presence in both response and exploratory variables, providing reliable classification even when dealing with contaminated datasets. A robust information criterion is proposed for model selection. Experiments on real and simulated data, artificially adulterated, are provided to underline the benefits of the proposed method

    Robust, fuzzy, and parsimonious clustering based on mixtures of Factor Analyzers

    Get PDF
    A clustering algorithm that combines the advantages of fuzzy clustering and robust statistical estimators is presented. It is based on mixtures of Factor Analyzers, endowed by the joint usage of trimming and the constrained estimation of scatter matrices, in a modified maximum likelihood approach. The algorithm generates a set of membership values, that are used to fuzzy partition the data set and to contribute to the robust estimates of the mixture parameters. The adoption of clusters modeled by Gaussian Factor Analysis allows for dimension reduction and for discovering local linear structures in the data. The new methodology has been shown to be resistant to different types of contamination, by applying it on artificial data. A brief discussion on the tuning parameters, such as the trimming level, the fuzzifier parameter, the number of clusters and the value of the scatter matrices constraint, has been developed, also with the help of some heuristic tools for their choice. Finally, a real data set has been analyzed, to show how intermediate membership values are estimated for observations lying at cluster overlap, while cluster cores are composed by observations that are assigned to a cluster in a crisp way.Ministerio de Economía y Competitividad grant MTM2017-86061-C2-1-P, y Consejería de Educación de la Junta de Castilla y León and FEDER grantVA005P17 y VA002G1

    Robust estimation for mixtures of Gaussian factor analyzers, based on trimming and constraints

    Get PDF
    Producción CientíficaMixtures of Gaussian factors are powerful tools for modeling an unobserved heterogeneous population, offering - at the same time - dimension reduction and model-based clustering. Unfortunately, the high prevalence of spurious solutions and the disturbing effects of outlying observations, along maximum likelihood estimation, open serious issues. In this paper we consider restrictions for the component covariances, to avoid spurious solutions, and trimming, to provide robustness against violations of normality assumptions of the underlying latent factors. A detailed AECM algorithm for this new approach is presented. Simulation results and an application to the AIS dataset show the aim and effectiveness of the proposed methodology

    Robust Approaches for Fuzzy Clusterwise Regression Based on Trimming and Constraints

    Get PDF
    Three different approaches for robust fuzzy clusterwise regression are reviewed. They are all based on the simultaneous application of trimming and constraints. The first one follows from the joint modeling of the response and explanatory variables through a normal component fitted in each cluster. The second one assumes normally distributed error terms conditional on the explanatory variables while the third approach is an extension of the Cluster Weighted Model. A fixed proportion of “most outlying” observations are trimmed. The use of appropriate constraints turns these problem into mathematically well-defined ones and, additionally, serves to avoid the detection of non-interesting or “spurious” linear clusters. The third proposal is specially appealing because it is able to protect us against outliers in the explanatory variables which may act as “bad leverage” points. Feasible and practical algorithms are outlined. Their performances, in terms of robustness, are illustrated in some simple simulated examples.Spanish Ministerio de Economía y Competitividad, grant MTM2017-86061-C2-1-P, and by Consejería de Educación de la Junta de Castilla y León and FEDER, grant VA005P17 and VA002G18

    Robust estimation of mixtures of regressions with random covariates, via trimming and constraints

    Get PDF
    Producción CientíficaA robust estimator for a wide family of mixtures of linear regression is presented. Robustness is based on the joint adoption of the Cluster Weighted Model and of an estimator based on trimming and restrictions. The selected model provides the conditional distribution of the response for each group, as in mixtures of regression, and further supplies local distributions for the explanatory variables. A novel version of the restrictions has been devised, under this model, for separately controlling the two sources of variability identified in it. This proposal avoids singularities in the log-likelihood, caused by approximate local collinearity in the explanatory variables or local exact fits in regressions, and reduces the occurrence of spurious local maximizers. In a natural way, due to the interaction between the model and the estimator, the procedure is able to resist the harmful influence of bad leverage points along the estimation of the mixture of regressions, which is still an open issue in the literature. The given methodology defines a well-posed statistical problem, whose estimator exists and is consistent to the corresponding solution of the population optimum, under widely general conditions. A feasible EM algorithm has also been provided to obtain the corresponding estimation. Many simulated examples and two real datasets have been chosen to show the ability of the procedure, on the one hand, to detect anomalous data, and, on the other hand, to identify the real cluster regressions without the influence of contamination. Keywords Cluster Weighted Modeling · Mixture of Regressions · Robustnes
    corecore