2,269 research outputs found

    Photospheric constraints, current uncertainties in models of stellar atmospheres, and spectroscopic surveys

    Full text link
    We summarize here the discussions around photospheric constraints, current uncertainties in models of stellar atmospheres, and reports on ongoing spectroscopic surveys. Rather than a panorama of the state of the art, we chose to present a list of open questions that should be investigated in order to improve future analyses.Comment: Proc. of the workshop "Asteroseismology of stellar populations in the Milky Way" (Sesto, 22-26 July 2013), Astrophysics and Space Science Proceedings, (eds. A. Miglio, L. Girardi, P. Eggenberger, J. Montalban

    Stars in the age of micro-arc-second astrometry

    Full text link
    The understanding and modeling of the structure and evolution of stars is based on statistical physics as well as on hydrodynamics. Today, a precise identification and proper description of the physical processes at work in stellar interiors are still lacking (one key point being that of transport processes) while the comparison of real stars to model predictions, which implies conversions from the theoretical space to the observational one, suffers from uncertainties in model atmospheres. That results in uncertainties on the prediction of stellar properties needed for galactic studies or cosmology (as stellar ages and masses). In the next decade, progress is expected from the theoretical, experimental and observational sides. I illustrate some of the problems we are faced with when modeling stars and the possible tracks towards their solutions. I discuss how future observational ground-based or spatial programs (in particular those dedicated to micro-arc-second astrometry, asteroseismology and interferometry) will provide precise determinations of the stellar parameters and contribute to a better knowledge of stellar interiors and atmospheres in a wide range of stellar masses, chemical compositions and evolution stages.Comment: 7 pages; to appear in the proceedings of "IAU Symposium 248 - A Giant Step: from Milli- to Micro-arcsecond Astrometry", held in Shanghai, China, 15-19 Oct. 200

    The Dark Matter Radial Profile in the Core of the Relaxed Cluster A2589

    Full text link
    We present an analysis of a Chandra--ACIS observation of the galaxy cluster A2589 to constrain the radial distribution of the total gravitating matter and the dark matter in the core of the cluster. A2589 is especially well-suited for this analysis because the hot gas in its core region (r < ~0.1 Rvir) is undisturbed by interactions with a central radio source. From the largest radius probed (r=0.07 Rvir) down to r ~0.02 Rvir dark matter dominates the gravitating mass. Over this region the radial profiles of the gravitating and dark matter are fitted well by the NFW and Hernquist profiles predicted by CDM. The density profiles are also described well by power laws, rho ~r^{-alpha}, where alpha=1.37 +/- 0.14 for the gravitating matter and alpha=1.35 +/- 0.21 for the dark matter. These values are consistent with profiles of CDM halos but are significantly larger than alpha ~0.5 found in LSB galaxies and expected from self-interacting dark matter models.Comment: 10 pages, 6 figures, To Appear in The Astrophysical Journal, March 20 issue, a few very minor changes to match copyedited versio

    The elemental composition of the Sun II. The iron group elements Sc to Ni

    Full text link
    We redetermine the abundances of all iron group nuclei in the Sun, based on neutral and singly-ionised lines of Sc, Ti, V, Mn, Fe, Co and Ni in the solar spectrum. We employ a realistic 3D hydrodynamic model solar atmosphere, corrections for departures from local thermodynamic equilibrium (NLTE), stringent line selection procedures and high quality observational data. We have scoured the literature for the best quality oscillator strengths, hyperfine constants and isotopic separations available for our chosen lines. We find logϵSc=3.16±0.04\log \epsilon_\mathrm{Sc}=3.16\pm0.04, logϵTi=4.93±0.04\log \epsilon_\mathrm{Ti}=4.93\pm0.04, logϵV=3.89±0.08\log \epsilon_\mathrm{V}=3.89\pm0.08, logϵCr=5.62±0.04\log \epsilon_\mathrm{Cr}=5.62\pm0.04, logϵMn=5.42±0.04\log \epsilon_\mathrm{Mn}=5.42\pm0.04, logϵFe=7.47±0.04\log \epsilon_\mathrm{Fe}=7.47\pm0.04, logϵCo=4.93±0.05\log \epsilon_\mathrm{Co}=4.93\pm0.05 and logϵNi=6.20±0.04\log \epsilon_\mathrm{Ni}=6.20\pm0.04. Our uncertainties factor in both statistical and systematic errors (the latter estimated for possible errors in the model atmospheres and NLTE line formation). The new abundances are generally in good agreement with the CI meteoritic abundances but with some notable exceptions. This analysis constitutes both a full exposition and a slight update of the preliminary results we presented in Asplund, Grevesse, Sauval & Scott (arXiv:0909.0948), including full line lists and details of all input data we employed.Comment: 10 figures, 24 pages + 10 online-only pages of tables. v2. Matches version accepted by A&

    Germanium and lead: Significant differences between meteoritic and photospheric abundances?

    Get PDF
    The order of the Galactic cosmic ray source (GCRS) composition in terms of first ionization potential (FIP) was examined. For most elements, the degree of volatility is (positively) correlated with the value of the FIP, so that it is not easy to distinguish a correlation of GCRS abundances anomalies with FIP from a correlation with volatility. Only a few permit to distinguish between the two kinds of ordering: if they are depleted relative to refractory metals, volatility must be relevant, if not, FIP is relevant. Among them Cu and Zn would seem to favor FIP. Among the best indicators are Ge and Pb. The abundance anomalies in GCRS are defined relative to a standard which, for the heavy elements concerned, is commonly taken as C1 Carbonaceous Chondrites. Photospheric abundances are more directly representative of the protosolar nebula, and hence of ordinary local galactic (LG) matter. The Ge and Pb reference abundance determinations in the Photosphere and in C1 meteorites are examined and their relevance to the problem with FIP vs. volatility in GCRs is discussed

    New solar opacities, abundances, helioseismology, and neutrino fluxes

    Full text link
    We construct solar models with the newly calculated radiative opacities from the Opacity Project (OP) and recently determined (lower) heavy element abundances. We compare results from the new models with predictions of a series of models that use OPAL radiative opacities, older determinations of the surface heavy element abundances, and refinements of nuclear reaction rates. For all the variations we consider, solar models that are constructed with the newer and lower heavy element abundances advocated by Asplund et al. (2005) disagree by much more than the estimated measuring errors with helioseismological determinations of the depth of the solar convective zone, the surface helium composition, the internal sound speeds, and the density profile. Using the new OP radiative opacities, the ratio of the 8B neutrino flux calculated with the older and larger heavy element abundances (or with the newer and lower heavy element abundances) to the total neutrino flux measured by the Sudbury Neutrino Observatory is 1.09 (0.87) with a 9% experimental uncertainty and a 16% theoretical uncertainty, 1 sigma errors.Comment: ApJ Letters (in press), added 3 references, detailed numerical solar models and distributions of neutrino fluxes available at http://www.sns.ias.edu/~jnb (models go back to 1982

    Metallicity structure in X-ray bright galaxy groups

    Full text link
    Using Chandra X-ray data of a sample of 15 X-ray bright galaxy groups, we present preliminary results of a coherent study of the radial distribution of metal abundances in the hot gas in groups. The iron content in group outskirts is found to be lower than in clusters by a factor of ~2, despite showing mean levels in the central regions comparable to those of clusters. The abundance profiles are used to constrain the contribution from supernovae type Ia and II to the chemical enrichment and thermal energy of the intragroup medium at different group radii. The results suggest a scenario in which a substantial fraction of the chemical enrichment of groups took place in filaments prior to group collapse.Comment: 5 pages, 2 figures. To appear in the proceedings of ESO Astrophysics Symposia: "Groups of Galaxies in the Nearby Universe", eds. I. Saviane, V. Ivanov, J. Burissova (Springer

    Standard Solar Neutrinos

    Get PDF
    An improved standard solar model has been used to calculate the fluxes of standard solar neutrinos. It includes premain sequence evolution, element diffusion, partial ionization effects, and all the possible nuclear reactions between the main elements. It uses updated values for the initial solar element abundances, the solar age, the solar luminosity, the nuclear reaction rates and the radiative opacities. Neither nuclear equilibrium, nor complete ionization are assumed. The calculated solar neutrino fluxes are compared with published results from the four solar neutrino experiments. The calculated 8^8B solar neutrino flux is consistent, within the theoretical and experimental uncertainties, with the solar neutrino observations at Homestake and Kamiokande. The observations suggest that the 7^7Be solar neutrino flux is much smaller than that predicted. However, conclusive evidence for the suppression of the 7^7Be solar neutrino flux will require experiments like BOREXINO and HELLAZ. If the 7^7Be solar neutrino flux is suppressed, it still can be due either to standard physics and astrophysics or neutrino properties beyond the standard electroweak model. Only future neutrino experiments, such as SNO, Superkamiokande, BOREXINO and HELLAZ, will be able to show that the solar neutrino problem is a consequence of neutrino properties beyond the standard electroweak model.Comment: To be published in ApJ. Vol. 468 (1996

    On The Progenitor of the Type II-Plateau Supernova 2003gd in Messier 74

    Full text link
    HST WFPC2 archival F606W and F300W images obtained within one year prior to the explosion of the nearby Type II supernova (SN) 2003gd in Messier 74 (NGC 628) have been analyzed to isolate the progenitor star. The SN site was located using precise astrometry applied to the HST images. Two plausible candidates are identified within 0.6" of the SN position in the F606W image. Neither candidate was detected in the F300W image. SN 2003gd appears to be of Type II-plateau (II-P), with age ~87 d on June 17 UT and with low reddening [E(B-V) = 0.13 mag]. The most likely of the two progenitor candidates has M_V_0 ~ -3.5 mag (for an extinction-corrected distance modulus of 29.3 mag) and, based on additional color information derived from a high-quality, archival ground-based I-band image, we estimate that this star was a red supergiant with initial mass M_ZAMS ~ 8 -- 9 Msun. This mass estimate is somewhat lower than, but relatively consistent with, recent limits placed on the progenitor masses of other SNe II-P, using HST data. Future HST imaging with the Advanced Camera for Surveys, when the SN has faded considerably, will be extremely useful in pinpointing the exact SN location and securing identification of the progenitor. If our proposed candidate is confirmed, it will be only the sixth SN progenitor ever directly identified.Comment: 10 pages, 6 figures, to appear now in PASP, 2003 Nov. This update includes more detailed light and color curves for the S
    corecore