4,756 research outputs found
Footstep and Motion Planning in Semi-unstructured Environments Using Randomized Possibility Graphs
Traversing environments with arbitrary obstacles poses significant challenges
for bipedal robots. In some cases, whole body motions may be necessary to
maneuver around an obstacle, but most existing footstep planners can only
select from a discrete set of predetermined footstep actions; they are unable
to utilize the continuum of whole body motion that is truly available to the
robot platform. Existing motion planners that can utilize whole body motion
tend to struggle with the complexity of large-scale problems. We introduce a
planning method, called the "Randomized Possibility Graph", which uses
high-level approximations of constraint manifolds to rapidly explore the
"possibility" of actions, thereby allowing lower-level motion planners to be
utilized more efficiently. We demonstrate simulations of the method working in
a variety of semi-unstructured environments. In this context,
"semi-unstructured" means the walkable terrain is flat and even, but there are
arbitrary 3D obstacles throughout the environment which may need to be stepped
over or maneuvered around using whole body motions.Comment: Accepted by IEEE International Conference on Robotics and Automation
201
Effect of calcium supplements on risk of myocardial infarction and cardiovascular events : meta-analysis
Peer reviewedPublisher PD
Analytical performance assessment of a novel active mooring system for load reduction in marine energy converters
This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Reliability and storm survival of Marine Energy Converters are critical to their commercial development and deployment. The Intelligent Active Mooring System (IAMS) is a novel device intended to minimise extreme and fatigue loading in mooring lines through a non-linear load–extension curve that is variable in operation to adjust to the prevailing metocean conditions. An analytical model of IAMS, validated by physical model tests at the Dynamic Marine Component test facility at the University of Exeter, is used in a numerical simulation of the performance of IAMS as part of the mooring system of the South West Mooring Test Facility buoy. A 10 m length of IAMS can reduce the rms line tension in normal operating conditions by up to 21% and the peak line tension in storm conditions by up to 21% when compared to braided nylon mooring lines. Peak line tension reductions of over 50% can be achieved if a longer IAMS unit is used. The resulting mooring system can be optimised to give load reductions in a wide range of metocean conditions; while variable pre-tension could be used for tidal range compensation or to ease access for installation and maintenance.The work reported here is part of a joint project between AWS Ocean Ltd., Teqniqa Systems Ltd. and the University of Exeter. The project was funded in part by the Technology Strategy Board (now Innovate UK) grant number 101970
Calcium supplements with or without vitamin D and risk of cardiovascular events : reanalysis of the Women's Health Initiative limited access dataset and meta-analysis
Peer reviewedPublisher PD
Probabilistic Completeness of Randomized Possibility Graphs Applied to Bipedal Walking in Semi-unstructured Environments
We present a theoretical analysis of a recent whole body motion planning method, the Randomized Possibility Graph, which uses a high-level decomposition of the feasibility constraint manifold in order to rapidly find routes that may lead to a solution. These routes are then examined by lower-level planners to determine feasibility. In this paper, we show that this approach is probabilistically complete for bipedal robots performing quasi-static walking in "semi-unstructured" environments. Furthermore, we show that the decomposition into higher and lower level planners allows for a considerably higher rate of convergence in the probability of finding a solution when one exists. We illustrate this improved convergence with a series of simulated scenarios
Modeling the human bone marrow niche in mice: From host bone marrow engraftment to bioengineering approaches
Xenotransplantation of patient-derived samples in mouse models has been instrumental in depicting the role of hematopoietic stem and progenitor cells in the establishment as well as progression of hematological malignancies. The foundations for this field of research have been based on the development of immunodeficient mouse models, which provide normal and malignant human hematopoietic cells with a supportive microenvironment. Immunosuppressed and genetically modified mice expressing human growth factors were key milestones in patient-derived xenograft (PDX) models, highlighting the importance of developing humanized microenvironments. The latest major improvement has been the use of human bone marrow (BM) niche-forming cells to generate human-mouse chimeric BM tissues in PDXs, which can shed light on the interactions between human stroma and hematopoietic cells. Here, we summarize the methods used for human hematopoietic cell xenotransplantation and their milestones and review the latest approaches in generating humanized BM tissues in mice to study human normal and malignant hematopoiesis
Calcium supplements and cancer risk : a meta-analysis of randomised controlled trials
Peer reviewedPublisher PD
- …
