115 research outputs found

    Observing object lifting errors modulates cortico-spinal excitability and improves object lifting performance.

    Get PDF
    PublishedJournal ArticleObserving the actions of others has been shown to modulate cortico-spinal excitability and affect behaviour. However, the sensorimotor consequences of observing errors are not well understood. Here, participants watched actors lift identically weighted large and small cubes which typically elicit expectation-based fingertip force errors. One group of participants observed the standard overestimation and underestimation-style errors that characterise early lifts with these cubes (Error video--EV). Another group watched the same actors performing the well-adapted error-free lifts that characterise later, well-practiced lifts with these cubes (No error video--NEV). We then examined actual object lifting performance in the subjects who watched the EV and NEV. Despite having similar cognitive expectations and perceptions of heaviness, the group that watched novice lifters making errors themselves made fewer overestimation-style errors than those who watched the expert lifts. To determine how the observation of errors alters cortico-spinal excitability, we measured motor evoked potentials in separate group of participants while they passively observed these EV and NEV. Here, we noted a novel size-based modulation of cortico-spinal excitability when observing the expert lifts, which was eradicated when watching errors. Together, these findings suggest that individuals' sensorimotor systems are sensitive to the subtle visual differences between observing novice and expert performance.G. Buckingham was supported with a Banting Postdoctoral Fellowship, awarded by the Natural Sciences and Engineering Council of Canada (NSERC

    Does the Sensorimotor System Minimize Prediction Error or Select the Most Likely Prediction During Object Lifting?

    Get PDF
    This is the author accepted manuscript. The final version is available from American Physiological Society via the DOI in this record.The human sensorimotor system is routinely capable of making accurate predictions about an object's weight, which allows for energetically efficient lifts and prevents objects from being dropped. Often however, poor predictions arise when the weight of an object can vary and sensory cues about object weight are sparse (e.g., picking up an opaque water bottle). The question arises, what strategies does the sensorimotor system use to make weight predictions when dealing with an object whose weight may vary? For example, does the sensorimotor system use a strategy that minimizes prediction error (minimal squared error) or one that selects the weight that is most likely to be correct (maximum a posteriori)? Here we dissociated the predictions of these two strategies by having participants lift an object whose weight varied according to a skewed probability distribution. We found, using a small range of weight uncertainty, that four indexes of sensorimotor prediction (grip force rate, grip force, load force rate, and load force) were consistent with a feedforward strategy that minimizes the square of prediction errors. These findings match research in the visuomotor system, suggesting parallels in underlying processes. We interpret our findings within a Bayesian framework and discuss the potential benefits of using a minimal squared error strategy.This work was supported by Canadian Institutes of Health Research and the Natural Sciences and Engineering Council of Canada

    Visual, Motor and Attentional Influences on Proprioceptive Contributions to Perception of Hand Path Rectilinearity during Reaching

    Get PDF
    We examined how proprioceptive contributions to perception of hand path straightness are influenced by visual, motor and attentional sources of performance variability during horizontal planar reaching. Subjects held the handle of a robot that constrained goal-directed movements of the hand to the paths of controlled curvature. Subjects attempted to detect the presence of hand path curvature during both active (subject driven) and passive (robot driven) movements that either required active muscle force production or not. Subjects were less able to discriminate curved from straight paths when actively reaching for a target versus when the robot moved their hand through the same curved paths. This effect was especially evident during robot-driven movements requiring concurrent activation of lengthening but not shortening muscles. Subjects were less likely to report curvature and were more variable in reporting when movements appeared straight in a novel “visual channel” condition previously shown to block adaptive updating of motor commands in response to deviations from a straight-line hand path. Similarly, compromised performance was obtained when subjects simultaneously performed a distracting secondary task (key pressing with the contralateral hand). The effects compounded when these last two treatments were combined. It is concluded that environmental, intrinsic and attentional factors all impact the ability to detect deviations from a rectilinear hand path during goal-directed movement by decreasing proprioceptive contributions to limb state estimation. In contrast, response variability increased only in experimental conditions thought to impose additional attentional demands on the observer. Implications of these results for perception and other sensorimotor behaviors are discussed

    The cross on rings performed by an Olympic champion

    Get PDF
    The cross is a key skill in Male Artistic Gymnastics rings routines. However, few researches were found about this skill. There is knowledge about the forces needed to perform the cross, or about muscles activation, separately. The aim of this paper was to accomplish a comprehensive research about the biomechanics of cross on rings, in order to obtain a descriptive model about this skill. Therefore, the currently Olympic champion on rings event volunteered in this research. He performed three crosses with the usual apparatus in his training gym. The measurement methods were combined: One digital video camera, one strain gauge in each cable and surface electromyography of nine right shoulder muscles were used. Statistical analyses were performed by parametric and non parametric tests and descriptive statistics. Symmetry values were calculated for shoulder angles and cables of right and left side. Coefficient of variation of muscle activation and co contraction were verified. Within gymnast variability was calculated using biological coefficient of variation (BCV), discretely for kinematic measures. Low variability values of shoulder angles and cable forces were verified and low values of asymmetry as well. Muscle activation varied according to muscle function, while co-contraction values were different among trials. These results pointed out the characteristics of the cross performed by an elite gymnast. Knowledge about the characteristics of cross can inform coaches, practitioners and clinicians how a successful skill should be presented

    Conclusions on motor control depend on the type of model used to represent the periphery

    Get PDF
    Within the field of motor control, there is no consensus on which kinematic and kinetic aspects of movements are planned or controlled. Perturbing goal-directed movements is a frequently used tool to answer this question. To be able to draw conclusions about motor control from kinematic responses to perturbations, a model of the periphery (i.e., the skeleton, muscle-tendon complexes, and spinal reflex circuitry) is required. The purpose of the present study was to determine to what extent such conclusions depend on the level of simplification with which the dynamical properties of the periphery are modeled. For this purpose, we simulated fast goal-directed single-joint movement with four existing types of models. We tested how three types of perturbations affected movement trajectory if motor commands remained unchanged. We found that the four types of models of the periphery showed different robustness to the perturbations, leading to different predictions on how accurate motor commands need to be, i.e., how accurate the knowledge of external conditions needs to be. This means that when interpreting kinematic responses obtained in perturbation experiments the level of error correction attributed to adaptation of motor commands depends on the type of model used to describe the periphery

    Adaptation to Delayed Force Perturbations in Reaching Movements

    Get PDF
    Adaptation to deterministic force perturbations during reaching movements was extensively studied in the last few decades. Here, we use this methodology to explore the ability of the brain to adapt to a delayed velocity-dependent force field. Two groups of subjects preformed a standard reaching experiment under a velocity dependent force field. The force was either immediately proportional to the current velocity (Control) or lagged it by 50 ms (Test). The results demonstrate clear adaptation to the delayed force perturbations. Deviations from a straight line during catch trials were shifted in time compared to post-adaptation to a non-delayed velocity dependent field (Control), indicating expectation to the delayed force field. Adaptation to force fields is considered to be a process in which the motor system predicts the forces to be expected based on the state that a limb will assume in response to motor commands. This study demonstrates for the first time that the temporal window of this prediction needs not to be fixed. This is relevant to the ability of the adaptive mechanisms to compensate for variability in the transmission of information across the sensory-motor system

    The SNARE Protein, Syntaxin1a, Plays an Essential Role in Biphasic Exocytosis of the Incretin Hormone, Glucagon-Like Peptide-1

    Get PDF
    Exocytosis of the hormone, glucagon-like peptide-1 (GLP-1), by the intestinal L-cell is essential for the incretin effect after nutrient ingestion, and is critical for the actions of dipeptidylpeptidase IV inhibitors that enhance GLP-1 levels in patients with type 2 diabetes. 2-Photon microscopy revealed that exocytosis of GLP-1 is biphasic, with a 1(st) peak at 1-6min and a 2(nd) peak at 7-12min after stimulation with forskolin. Approximately 75% of the exocytotic events were represented by compound granule fusion, and the remainder were accounted for by full fusion of single granules, under basal and stimulated conditions. The core SNARE protein, syntaxin-1a (syn1a), was expressed by murine ileal L-cells. At the single L-cell level, 1(st) phase forskolin-induced exocytosis was reduced to basal (p<0.05) and 2(nd) phase exocytosis was abolished (p<0.05) by syn1a knockout. L-cells from intestinal-epithelial syn1a-deficient mice demonstrated a 63% reduction in forskolin-induced GLP-1 release in vitro (p<0.001), and a 23% reduction in oral glucose-stimulated GLP-1 secretion (p<0.05) in association with impairments in glucose-stimulated insulin release (by 60%, p<0.01) and glucose tolerance (by 20%, p<0.01). Our findings therefore identify an exquisite mechanism of metered secretory output that precisely regulates release of the incretin hormone, GLP-1 and, hence, insulin secretion following a meal

    Distinct Haptic Cues Do Not Reduce Interference when Learning to Reach in Multiple Force Fields

    Get PDF
    Background: Previous studies of learning to adapt reaching movements in the presence of novel forces show that learning multiple force fields is prone to interference. Recently it has been suggested that force field learning may reflect learning to manipulate a novel object. Within this theoretical framework, interference in force field learning may be the result of static tactile or haptic cues associated with grasp, which fail to indicate changing dynamic conditions. The idea that different haptic cues (e.g. those associated with different grasped objects) signal motor requirements and promote the learning and retention of multiple motor skills has previously been unexplored in the context of force field learning. Methodology/Principle Findings: The present study tested the possibility that interference can be reduced when two different force fields are associated with differently shaped objects grasped in the hand. Human subjects were instructed to guide a cursor to targets while grasping a robotic manipulandum, which applied two opposing velocity-dependent curl fields to the hand. For one group of subjects the manipulandum was fitted with two different handles, one for each force field. No attenuation in interference was observed in these subjects relative to controls who used the same handle for both force fields. Conclusions/Significance: These results suggest that in the context of the present learning paradigm, haptic cues on their own are not sufficient to reduce interference and promote learning multiple force fields

    Optimal Compensation for Temporal Uncertainty in Movement Planning

    Get PDF
    Motor control requires the generation of a precise temporal sequence of control signals sent to the skeletal musculature. We describe an experiment that, for good performance, requires human subjects to plan movements taking into account uncertainty in their movement duration and the increase in that uncertainty with increasing movement duration. We do this by rewarding movements performed within a specified time window, and penalizing slower movements in some conditions and faster movements in others. Our results indicate that subjects compensated for their natural duration-dependent temporal uncertainty as well as an overall increase in temporal uncertainty that was imposed experimentally. Their compensation for temporal uncertainty, both the natural duration-dependent and imposed overall components, was nearly optimal in the sense of maximizing expected gain in the task. The motor system is able to model its temporal uncertainty and compensate for that uncertainty so as to optimize the consequences of movement

    Do we use a priori knowledge of gravity when making elbow rotations?

    Get PDF
    In this study, we aim to investigate whether motor commands, emanating from movement planning, are customized to movement orientation relative to gravity from the first trial on. Participants made fast point-to-point elbow flexions and extensions in the transverse plane. We compared movements that had been practiced in reclined orientation either against or with gravity with the same movement relative to the body axis made in the upright orientation (neutral compared to gravity). For each movement type, five rotations from reclined to upright orientation were made. For each rotation, we analyzed the first trial in upright orientation and the directly preceding trial in reclined orientation. Additionally, we analyzed the last five trials of a 30-trial block in upright position and compared these trials with the first trials in upright orientation. Although participants moved fast, gravitational torques were substantial. The change in body orientation affected movement planning: we found a decrease in peak angular velocity and a decrease in amplitude for the first trials made in the upright orientation, regardless of whether the previous movements in reclined orientation were made against or with gravity. We found that these decreases disappeared after participants familiarized themselves with moving in upright position in a 30-trial block. These results indicate that participants used a general strategy, corresponding to the strategy observed in situations with unreliable or limited information on external conditions. From this, we conclude that during movement planning, a priori knowledge of gravity was not used to specifically customize motor commands for the neutral gravity condition
    corecore