691 research outputs found
A geometric model of defensive peripersonal space
Potentially harmful stimuli occurring within the defensive peripersonal space (DPPS), a protective area surrounding the body, elicit stronger defensive reactions. The spatial features of the DPPS are poorly defined and limited to descriptive estimates of its extent along a single dimension. Here we postulated a family of geometric models of the DPPS, to address two important questions with respect to its spatial features: What is its fine-grained topography? How does the nervous system represent the body area to be defended? As a measure of the DPPS, we used the strength of the defensive blink reflex elicited by electrical stimulation of the hand (hand-blink reflex, HBR), which is reliably modulated by the position of the stimulated hand in egocentric coordinates. We tested the goodness of fit of the postulated models to HBR data from six experiments in which we systematically explored the HBR modulation by hand position in both head-centered and body-centered coordinates. The best-fitting model indicated that 1) the nervous system's representation of the body area defended by the HBR can be approximated by a half-ellipsoid centered on the face and 2) the DPPS extending from this area has the shape of a bubble elongated along the vertical axis. Finally, the empirical observation that the HBR is modulated by hand position in head-centered coordinates indicates that the DPPS is anchored to the face. The modeling approach described in this article can be generalized to describe the spatial modulation of any defensive response
Lorentz violation, Gravity, Dissipation and Holography
We reconsider Lorentz Violation (LV) at the fundamental level. We show that
Lorentz Violation is intimately connected with gravity and that LV couplings in
QFT must always be fields in a gravitational sector. Diffeomorphism invariance
must be intact and the LV couplings transform as tensors under coordinate/frame
changes. Therefore searching for LV is one of the most sensitive ways of
looking for new physics, either new interactions or modifications of known
ones. Energy dissipation/Cerenkov radiation is shown to be a generic feature of
LV in QFT. A general computation is done in strongly coupled theories with
gravity duals. It is shown that in scale invariant regimes, the energy
dissipation rate depends non-triviallly on two characteristic exponents, the
Lifshitz exponent and the hyperscaling violation exponent.Comment: LateX, 51 pages, 9 figures. (v2) References and comments added.
Misprints correcte
Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons
The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions
Automated Analysis of Cryptococcal Macrophage Parasitism Using GFP-Tagged Cryptococci
The human fungal pathogens Cryptococcus neoformans and C. gattii cause life-threatening infections of the central nervous system. One of the major characteristics of cryptococcal disease is the ability of the pathogen to parasitise upon phagocytic immune effector cells, a phenomenon that correlates strongly with virulence in rodent models of infection. Despite the importance of phagocyte/Cryptococcus interactions to disease progression, current methods for assaying virulence in the acrophage system are both time consuming and low throughput. Here, we introduce the first stable and fully characterised GFP–expressing derivatives of two widely used cryptococcal strains: C. neoformans serotype A type strain H99 and C. gattii serotype B type strain R265. Both strains show unaltered responses to environmental and host stress conditions and no deficiency in virulence in the macrophage model system. In addition, we report the development of a method to effectively and rapidly investigate macrophage parasitism by flow cytometry, a technique that preserves the accuracy of current approaches but offers a four-fold improvement in speed
Study of the reaction e^{+}e^{-} -->J/psi\pi^{+}\pi^{-} via initial-state radiation at BaBar
We study the process with
initial-state-radiation events produced at the PEP-II asymmetric-energy
collider. The data were recorded with the BaBar detector at center-of-mass
energies 10.58 and 10.54 GeV, and correspond to an integrated luminosity of 454
. We investigate the mass
distribution in the region from 3.5 to 5.5 . Below 3.7
the signal dominates, and above 4
there is a significant peak due to the Y(4260). A fit to
the data in the range 3.74 -- 5.50 yields a mass value
(stat) (syst) and a width value (stat)(syst) for this state. We do not
confirm the report from the Belle collaboration of a broad structure at 4.01
. In addition, we investigate the system
which results from Y(4260) decay
ACL injuries identifiable for pre-participation imagiological analysis: Risk factors
Identification of pre-participation risk factors for noncontact anterior cruciate ligament (ACL) injuries has been attracting a great deal of interest in the sports medicine and traumatology communities. Appropriate methods that enable predicting which patients could benefit from pre- ventive strategies are most welcome. This would enable athlete-specific training and conditioning or tailored equipment in order to develop appropriate strategies to reduce incidence of injury. In order to accomplish these goals, the ideal system should be able to assess both anatomic and functional features. Complementarily, the screening method must be cost-effective and suited for widespread application. Anatomic study protocol requiring only standard X rays could answer some of such demands. Dynamic MRI/CT evaluation and electronically assisted pivot-shift evaluation can be powerful tools providing complementary information. These upcoming insights, when validated and properly combined, envision changing pre-participation knee examination in the near future. Herein different methods (validated or under research) aiming to improve the capacity to identify persons/athletes with higher risk for ACL injury are overviewed.
Changing behaviour 'more or less'-do theories of behaviour inform strategies for implementation and de-implementation? A critical interpretive synthesis
BACKGROUND: Implementing evidence-based care requires healthcare practitioners to do less of some things (de-implementation) and more of others (implementation). Variations in effectiveness of behaviour change interventions may result from failure to consider a distinction between approaches by which behaviour increases and decreases in frequency. The distinction is not well represented in methods for designing interventions. This review aimed to identify whether there is a theoretical rationale to support this distinction. METHODS: Using Critical Interpretative Synthesis, this conceptual review included papers from a broad range of fields (biology, psychology, education, business) likely to report approaches for increasing or decreasing behaviour. Articles were identified from databases using search terms related to theory and behaviour change. Articles reporting changes in frequency of behaviour and explicit use of theory were included. Data extracted were direction of behaviour change, how theory was operationalised, and theory-based recommendations for behaviour change. Analyses of extracted data were conducted iteratively and involved inductive coding and critical exploration of ideas and purposive sampling of additional papers to explore theoretical concepts in greater detail. RESULTS: Critical analysis of 66 papers and their theoretical sources identified three key findings: (1) 9 of the 15 behavioural theories identified do not distinguish between implementation and de-implementation (5 theories were applied to only implementation or de-implementation, not both); (2) a common strategy for decreasing frequency was substituting one behaviour with another. No theoretical basis for this strategy was articulated, nor were methods proposed for selecting appropriate substitute behaviours; (3) Operant Learning Theory makes an explicit distinction between techniques for increasing and decreasing frequency. DISCUSSION: Behavioural theories provide little insight into the distinction between implementation and de-implementation. Operant Learning Theory identified different strategies for implementation and de-implementation, but these strategies may not be acceptable in health systems. Additionally, if behaviour substitution is an approach for de-implementation, further investigation may inform methods or rationale for selecting the substitute behaviour
Fiber-optic chemical sensors for competitive binding fluoroimmunoassay
This paper describes the development of a fiber-optic chemical sensor based on the principle of competitive-binding fluorescence immunoassay. Rabbit immunoglobln G (IgG) is covalently Immobilized on the distal sensing tip of a quartz optical fiber. The sensor is exposed to fluorescein Isothiocyanate (FITC) labeled and unlabeled anti-rabbit IgG. The 488-nm line of an argon-ion laser provides excitation of sensor-bound analyte. This results in fluorescence emission at the optical fiber‧s sensing tip. Sensor response is inversely proportional to the amount of unlabeled anti-IgG In the sample. Limits of detection (LOD) vary with Incubation time, sample size, and measurement conditions. For 10-μL samples, typical LOD are 25 fmol of unlabeled antibody In a 20-min Incubation period. These results Indicate that each fiber-optic fluoroimmunosensor can be constructed to perform a single sensitive, rapid, low-volume immunoassay, in in situ or benchtop applications. © 1987, American Chemical Society. All rights reserved
Recommended from our members
NMR-based metabolic characterization of chicken tissues and biofluids: a model for avian research
Introduction
Poultry is one of the most consumed meat in the world and its related industry is always looking for ways to improve animal welfare and productivity. It is therefore essential to understand the metabolic response of the chicken to new feed formulas, various supplements, infections and treatments.
Objectives
As a basis for future research investigating the impact of diet and infections on chicken’s metabolism, we established a high-resolution proton nuclear magnetic resonance (NMR)-based metabolic atlas of the healthy chicken (Gallus gallus).
Methods
Metabolic extractions were performed prior to 1H-NMR and 2D NMR spectra acquisition on twelve biological matrices: liver, kidney, spleen, plasma, egg yolk and white, colon, caecum, faecal water, ileum, pectoral muscle and brain of 6 chickens. Metabolic profiles were then exhaustively characterized.
Results
Nearly 80 metabolites were identified. A cross-comparison of these matrices was performed to determine metabolic variations between and within each section and highlighted that only eight core metabolites were systematically found in every matrice.
Conclusion
This work constitutes a database for future NMR-based metabolomic investigations in relation to avian production and health
Revisiting the B-cell compartment in mouse and humans: more than one B-cell subset exists in the marginal zone and beyond.
International audienceABSTRACT: The immunological roles of B-cells are being revealed as increasingly complex by functions that are largely beyond their commitment to differentiate into plasma cells and produce antibodies, the key molecular protagonists of innate immunity, and also by their compartmentalisation, a more recently acknowledged property of this immune cell category. For decades, B-cells have been recognised by their expression of an immunoglobulin that serves the function of an antigen receptor, which mediates intracellular signalling assisted by companion molecules. As such, B-cells were considered simple in their functioning compared to the other major type of immune cell, the T-lymphocytes, which comprise conventional T-lymphocyte subsets with seminal roles in homeostasis and pathology, and non-conventional T-lymphocyte subsets for which increasing knowledge is accumulating. Since the discovery that the B-cell family included two distinct categories - the non-conventional, or extrafollicular, B1 cells, that have mainly been characterised in the mouse; and the conventional, or lymph node type, B2 cells - plus the detailed description of the main B-cell regulator, FcγRIIb, and the function of CD40+ antigen presenting cells as committed/memory B-cells, progress in B-cell physiology has been slower than in other areas of immunology. Cellular and molecular tools have enabled the revival of innate immunity by allowing almost all aspects of cellular immunology to be re-visited. As such, B-cells were found to express "Pathogen Recognition Receptors" such as TLRs, and use them in concert with B-cell signalling during innate and adaptive immunity. An era of B-cell phenotypic and functional analysis thus began that encompassed the study of B-cell microanatomy principally in the lymph nodes, spleen and mucosae. The novel discovery of the differential localisation of B-cells with distinct phenotypes and functions revealed the compartmentalisation of B-cells. This review thus aims to describe novel findings regarding the B-cell compartments found in the mouse as a model organism, and in human physiology and pathology. It must be emphasised that some differences are noticeable between the mouse and human systems, thus increasing the complexity of B-cell compartmentalisation. Special attention will be given to the (lymph node and spleen) marginal zones, which represent major crossroads for B-cell types and functions and a challenge for understanding better the role of B-cell specificities in innate and adaptive immunology
- …
