2,846 research outputs found
Recommended from our members
Manipulating nanoscale structure to control functionality in printed organic photovoltaic, transistor and bioelectronic devices.
Printed electronics is simultaneously one of the most intensely studied emerging research areas in science and technology and one of the fastest growing commercial markets in the world today. For the past decade the potential for organic electronic (OE) materials to revolutionize this printed electronics space has been widely promoted. Such conviction in the potential of these carbon-based semiconducting materials arises from their ability to be dissolved in solution, and thus the exciting possibility of simply printing a range of multifunctional devices onto flexible substrates at high speeds for very low cost using standard roll-to-roll printing techniques. However, the transition from promising laboratory innovations to large scale prototypes requires precise control of nanoscale material and device structure across large areas during printing fabrication. Maintaining this nanoscale material control during printing presents a significant new challenge that demands the coupling of OE materials and devices with clever nanoscience fabrication approaches that are adapted to the limited thermodynamic levers available. In this review we present an update on the strategies and capabilities that are required in order to manipulate the nanoscale structure of large area printed organic photovoltaic (OPV), transistor and bioelectronics devices in order to control their device functionality. This discussion covers a range of efforts to manipulate the electroactive ink materials and their nanostructured assembly into devices, and also device processing strategies to tune the nanoscale material properties and assembly routes through printing fabrication. The review finishes by highlighting progress in printed OE devices that provide a feedback loop between laboratory nanoscience innovations and their feasibility in adapting to large scale printing fabrication. The ability to control material properties on the nanoscale whilst simultaneously printing functional devices on the square metre scale is prompting innovative developments in the targeted nanoscience required for OPV, transistor and biofunctional devices
Seeing the big PICTURE: A framework for improving the communication of requirements within the Business-IT relationship
The relationship between the business and IT departments in the context of the organisation has been characterised as highly divisive. Contributing problems appear to revolve around the failure to adequately communicate and understand the required information for the alignment of business and IT strategies and infrastructures. This study takes a communication-based view on the concept of alignment, in terms of the relationship between the retail business and IT within a major high street UK bank. A research framework (PICTURE) is used to provide insight into this relationship and guide the analysis of interviews with 29 individuals on mid-high management level for their thematic content. The paper highlights the lessons that can be derived from the study of the BIT relationship and how possible improvements could be made
Implications of large dimuon CP asymmetry in B_{d,s} decays on minimal flavor violation with low tan beta
The D0 collaboration has recently announced evidence for a dimuon CP
asymmetry in B_{d,s} decays of order one percent. If confirmed, this asymmetry
requires new physics. We argue that for minimally flavor violating (MFV) new
physics, and at low tan beta=v_u/v_d, there are only two four-quark operators
(Q_{2,3}) that can provide the required CP violating effect. The scale of such
new physics must lie below 260 GeV sqrt{tan beta}. The effect is universal in
the B_s and B_d systems, leading to S_{psi K}~sin(2beta)-0.15 and S_{psi
phi}~0.25. The effects on epsilon_K and on electric dipole moments are
negligible. The most plausible mechanism is tree-level scalar exchange. MFV
supersymmetry with low tan beta will be excluded. Finally, we explain how a
pattern of deviations from the Standard Model predictions for S_{psi phi},
S_{psi K} and epsilon_K can be used to test MFV and, if MFV holds, to probe its
structure in detail.Comment: 11 pages. v2: References adde
The relationship between the systemic inflammatory response, tumour proliferative activity, T-lymphocytic and macrophage infiltration, microvessel density and survival in patients with primary operable breast cancer
The significance of the inter-relationship between tumour and host local/systemic inflammatory responses in primary operable invasive breast cancer is limited. The inter-relationship between the systemic inflammatory response (pre-operative white cell count, C-reactive protein and albumin concentrations), standard clinicopathological factors, tumour T-lymphocytic (CD4+ and CD8+) and macrophage (CD68+) infiltration, proliferative (Ki-67) index and microvessel density (CD34+) was examined using immunohistochemistry and slide-counting techniques, and their prognostic values were examined in 168 patients with potentially curative resection of early-stage invasive breast cancer. Increased tumour grade and proliferative activity were associated with greater tumour T-lymphocyte (P<0.05) and macrophage (P<0.05) infiltration and microvessel density (P<0.01). The median follow-up of survivors was 72 months. During this period, 31 patients died; 18 died of their cancer. On univariate analysis, increased lymph-node involvement (P<0.01), negative hormonal receptor (P<0.10), lower albumin concentrations (P<0.01), increased tumour proliferation (P<0.05), increased tumour microvessel density (P<0.05), the extent of locoregional control (P<0.0001) and limited systemic treatment (Pless than or equal to0.01) were associated with cancer-specific survival. On multivariate analysis of these significant covariates, albumin (HR 4.77, 95% CI 1.35–16.85, P=0.015), locoregional treatment (HR 3.64, 95% CI 1.04–12.72, P=0.043) and systemic treatment (HR 2.29, 95% CI 1.23–4.27, P=0.009) were significant independent predictors of cancer-specific survival. Among tumour-based inflammatory factors, only tumour microvessel density (P<0.05) was independently associated with poorer cancer-specific survival. The host inflammatory responses are closely associated with poor tumour differentiation, proliferation and malignant disease progression in breast cancer
Universal Ratios in the 2-D Tricritical Ising Model
We consider the universality class of the two-dimensional Tricritical Ising
Model. The scaling form of the free-energy naturally leads to the definition of
universal ratios of critical amplitudes which may have experimental relevance.
We compute these universal ratios by a combined use of results coming from
Perturbed Conformal Field Theory, Integrable Quantum Field Theory and numerical
methods.Comment: 4 pages, LATEX fil
Mutations in pericentrin cause Seckel syndrome with defective ATR-dependent DNA damage signaling
Large brain size is one of the defining characteristics of modern humans. Seckel syndrome (MIM 210600), a disorder of markedly reduced brain and body size, is associated with defective ATR-dependent DNA damage signaling. Only a single hypomorphic mutation of ATR has been identified in this genetically heterogeneous condition. We now report that mutations in the gene encoding pericentrin (PCNT)--resulting in the loss of pericentrin from the centrosome, where it has key functions anchoring both structural and regulatory proteins--also cause Seckel syndrome. Furthermore, we find that cells of individuals with Seckel syndrome due to mutations in PCNT (PCNT-Seckel) have defects in ATR-dependent checkpoint signaling, providing the first evidence linking a structural centrosomal protein with DNA damage signaling. These findings also suggest that other known microcephaly genes implicated in either DNA repair responses or centrosomal function may act in common developmental pathways determining human brain and body size
Recommended from our members
Fragments of an Early Islamic Arabic Papyrus from Khirbat Hamra Ifdan
Excavations in 2013 at the site of Khirbet Hamrā Ifdān in the Faynān revealed several pieces of an Arabic papyrus, the first ever found in Jordan. Although the papyrus is poorly preserved, a detailed analysis of the fragments based on parallels have suggested that it dates to the late seventh/early–mid-eighth century AD. This article discusses the papyrus fragments and places them within their papyrological and archaeological contexts
- …
