13,620 research outputs found
Investigation of hydrogen-air ignition sensitized by nitric oxide and by nitrogen dioxide
The sensitization of stoichiometric hydrogen-air ignition by NO, NO2 and a mixture of NO and NO2 was investigated behind reflected shock waves in a shock tube. Induction times were measured in pressure range 0.27 to 2.0 atm, temperature range 800 to 1500 K, and for NO or NO2 mole percent between 0.0 and 4.5. Addition of both NO and NO2 reduced the measured induction times. The experimental data are interpreted in terms of H2-O2-NO(x) oxidation reaction mechanisms. The influence of NO(x) upon a supersonic combustion ramjet combustor test, conducted in an arc-heated facility, is assessed
Spin-to-Orbital Angular Momentum Conversion and Spin-Polarization Filtering in Electron Beams
We propose the design of a space-variant Wien filter for electron beams that
induces a spin half-turn and converts the corresponding spin angular momentum
variation into orbital angular momentum of the beam itself by exploiting a
geometrical phase arising in the spin manipulation. When applied to a spatially
coherent input spin-polarized electron beam, such a device can generate an
electron vortex beam, carrying orbital angular momentum. When applied to an
unpolarized input beam, the proposed device, in combination with a suitable
diffraction element, can act as a very effective spin-polarization filter. The
same approach can also be applied to neutron or atom beams.Comment: 9 pages, 5 figure
CLASH-VLT: Strangulation of cluster galaxies in MACSJ0416.1-2403 as seen from their chemical enrichment
(abridged) We explore the Frontier Fields cluster MACS J0416.1-2403 at
z=0.3972 with VIMOS/VLT spectroscopy from the CLASH-VLT survey covering a
region which corresponds to almost three virial radii. We measure fluxes of 5
emission lines of 76 cluster members enabling us to unambiguously derive O/H
gas metallicities, and also SFRs from Halpha. For intermediate massses we find
a similar distribution of cluster and field galaxies in the MZR and mass vs.
sSFR diagrams. Bulge-dominated cluster galaxies have on average lower sSFRs and
higher O/Hs compared to their disk-dominated counterparts. We use the location
of galaxies in the projected velocity vs. position phase-space to separate our
cluster sample into a region of objects accreted longer time ago and a region
of recently accreted and infalling galaxies. We find a higher fraction of
accreted metal-rich galaxies (63%) compared to the fraction of 28% of
metal-rich galaxies in the infalling regions. Intermediate mass galaxies
falling into the cluster for the first time are found to be in agreement with
predictions of the fundamental metallicity relation. In contrast, for already
accreted star-forming galaxies of similar masses, we find on average
metallicities higher than predicted by the models. This trend is intensified
for accreted cluster galaxies of the lowest mass bin, that display
metallicities 2-3 times higher than predicted by models with primordial gas
inflow. Environmental effects therefore strongly influence gas regulations and
control gas metallicities of log(M/Msun)<10.2 (Salpeter IMF) cluster galaxies.
We also investigate chemical evolutionary paths of model galaxies with and
without inflow of gas showing that strangulation is needed to explain the
higher metallicities of accreted cluster galaxies. Our results favor a
strangulation scenario in which gas inflow stops for log(M/Msun)<10.2 galaxies
when accreted by the cluster.Comment: Version better matched to the published version, including table with
observed and derived quantities for the 76 cluster galaxie
Synaptic boutons sizes are tuned to best fit their physiological performances
To truly appreciate the myriad of events which relate synaptic function and vesicle dynamics, simulations should be done in a spatially realistic environment. This holds true in particular in order to explain as well the rather astonishing motor patterns which we observed within in vivo recordings which underlie peristaltic contractionsas well as the shape of the EPSPs at different forms of long-term stimulation, presented both here, at a well characterized synapse, the neuromuscular junction (NMJ) of the Drosophila larva (c.f. Figure 1). To this end, we have employed a reductionist approach and generated three dimensional models of single presynaptic boutons at the Drosophila larval NMJ. Vesicle dynamics are described by diffusion-like partial differential equations which are solved numerically on unstructured grids using the uG platform. In our model we varied parameters such as bouton-size, vesicle output probability (Po), stimulation frequency and number of synapses, to observe how altering these parameters effected bouton function. Hence we demonstrate that the morphologic and physiologic specialization maybe a convergent evolutionary adaptation to regulate the trade off between sustained, low output, and short term, high output, synaptic signals. There seems to be a biologically meaningful explanation for the co-existence of the two different bouton types as previously observed at the NMJ (characterized especially by the relation between size and Po), the assigning of two different tasks with respect to short- and long-time behaviour could allow for an optimized interplay of different synapse types. We can present astonishing similar results of experimental and simulation data which could be gained in particular without any data fitting, however based only on biophysical values which could be taken from different experimental results. As a side product, we demonstrate how advanced methods from numerical mathematics could help in future to resolve also other difficult experimental neurobiological issues
Large-scale multielectrode recording and stimulation of neural activity
Large circuits of neurons are employed by the brain to encode and process information. How this encoding and processing is carried out is one of the central questions in neuroscience. Since individual neurons communicate with each other through electrical signals (action potentials), the recording of neural activity with arrays of extracellular electrodes is uniquely suited for the investigation of this question. Such recordings provide the combination of the best spatial (individual neurons) and temporal (individual action-potentials) resolutions compared to other large-scale imaging methods. Electrical stimulation of neural activity in turn has two very important applications: it enhances our understanding of neural circuits by allowing active interactions with them, and it is a basis for a large variety of neural prosthetic devices. Until recently, the state-of-the-art in neural activity recording systems consisted of several dozen electrodes with inter-electrode spacing ranging from tens to hundreds of microns. Using silicon microstrip detector expertise acquired in the field of high-energy physics, we created a unique neural activity readout and stimulation framework that consists of high-density electrode arrays, multi-channel custom-designed integrated circuits, a data acquisition system, and data-processing software. Using this framework we developed a number of neural readout and stimulation systems: (1) a 512-electrode system for recording the simultaneous activity of as many as hundreds of neurons, (2) a 61-electrode system for electrical stimulation and readout of neural activity in retinas and brain-tissue slices, and (3) a system with telemetry capabilities for recording neural activity in the intact brain of awake, naturally behaving animals. We will report on these systems, their various applications to the field of neurobiology, and novel scientific results obtained with some of them. We will also outline future directions
Massive Star cluster formation under the microscope at z=6
We report on a superdense star-forming region with an effective radius (R_e)
smaller than 13 pc identified at z=6.143 and showing a star-formation rate
density \Sigma_SFR~1000 Msun/yr/kpc2 (or conservatively >300 Msun/yr/kpc2).
Such a dense region is detected with S/N>40 hosted by a dwarf extending over
440 pc, dubbed D1 (Vanzella et al. 2017b). D1 is magnified by a factor
17.4+/-5.0 behind the Hubble Frontier Field galaxy cluster MACS~J0416 and
elongated tangentially by a factor 13.2+/-4.0 (including the systematic
errors). The lens model accurately reproduces the positions of the confirmed
multiple images with a r.m.s. of 0.35", and the tangential stretch is well
depicted by a giant multiply-imaged Lya arc. D1 is part of an interacting
star-forming complex extending over 800 pc. The SED-fitting, the very blue
ultraviolet slope (\beta ~ -2.5, F(\lambda) ~ \lambda^\beta) and the prominent
Lya emission of the stellar complex imply that very young (< 10-100 Myr),
moderately dust-attenuated (E(B-V)<0.15) stellar populations are present and
organised in dense subcomponents. We argue that D1 (with a stellar mass of 2 x
10^7 Msun) might contain a young massive star cluster of M < 10^6 Msun and
Muv~-15.6 (or m_uv=31.1), confined within a region of 13 pc, and not dissimilar
from some local super star clusters (SSCs). The ultraviolet appearance of D1 is
also consistent with a simulated local dwarf hosting a SSC placed at z=6 and
lensed back to the observer. This compact system fits into some popular
globular cluster formation scenarios. We show that future high spatial
resolution imaging (e.g., E-ELT/MAORY-MICADO and VLT/MAVIS) will allow us to
spatially resolve light profiles of 2-8 pc.Comment: 21 pages, 14 figures, 1 table, MNRAS accepte
- …
