122 research outputs found

    ServeNet: A Deep Neural Network for Web Services Classification

    Full text link
    Automated service classification plays a crucial role in service discovery, selection, and composition. Machine learning has been widely used for service classification in recent years. However, the performance of conventional machine learning methods highly depends on the quality of manual feature engineering. In this paper, we present a novel deep neural network to automatically abstract low-level representation of both service name and service description to high-level merged features without feature engineering and the length limitation, and then predict service classification on 50 service categories. To demonstrate the effectiveness of our approach, we conduct a comprehensive experimental study by comparing 10 machine learning methods on 10,000 real-world web services. The result shows that the proposed deep neural network can achieve higher accuracy in classification and more robust than other machine learning methods.Comment: Accepted by ICWS'2

    Autonomous Unmanned Aerial Vehicle Navigation using Reinforcement Learning: A Systematic Review

    Get PDF
    There is an increasing demand for using Unmanned Aerial Vehicle (UAV), known as drones, in different applications such as packages delivery, traffic monitoring, search and rescue operations, and military combat engagements. In all of these applications, the UAV is used to navigate the environment autonomously --- without human interaction, perform specific tasks and avoid obstacles. Autonomous UAV navigation is commonly accomplished using Reinforcement Learning (RL), where agents act as experts in a domain to navigate the environment while avoiding obstacles. Understanding the navigation environment and algorithmic limitations plays an essential role in choosing the appropriate RL algorithm to solve the navigation problem effectively. Consequently, this study first identifies the main UAV navigation tasks and discusses navigation frameworks and simulation software. Next, RL algorithms are classified and discussed based on the environment, algorithm characteristics, abilities, and applications in different UAV navigation problems, which will help the practitioners and researchers select the appropriate RL algorithms for their UAV navigation use cases. Moreover, identified gaps and opportunities will drive UAV navigation research

    Agglomerative Hierarchical Clustering with Dynamic Time Warping for Household Load Curve Clustering

    Get PDF
    Energy companies often implement various demand response (DR) programs to better match electricity demand and supply by offering the consumers incentives to reduce their demand during critical periods. Classifying clients according to their consumption patterns enables targeting specific groups of consumers for DR. Traditional clustering algorithms use standard distance measurement to find the distance between two points. The results produced by clustering algorithms such as K-means, K-medoids, and Gaussian Mixture Models depend on the clustering parameters or initial clusters. In contrast, our methodology uses a shape-based approach that combines Agglomerative Hierarchical Clustering (AHC) with Dynamic Time Warping (DTW) to classify residential households\u27 daily load curves based on their consumption patterns. While DTW seeks the optimal alignment between two load curves, AHC provides a realistic initial clusters center. In this paper, we compare the results with other clustering algorithms such as K-means, K-medoids, and GMM using different distance measures, and we show that AHC using DTW outperformed other clustering algorithms and needed fewer clusters
    corecore