342 research outputs found
Fermi Surface Nesting and Nanoscale Fluctuating Charge/Orbital Ordering in Colossal Magnetoresistive Oxides
We used high resolution angle-resolved photoemission spectroscopy to reveal
the Fermi surface and key transport parameters of the metallic state of the
layered Colossal Magnetoresistive (CMR) oxide La1.2Sr1.8Mn2O7. With these
parameters the calculated in-plane conductivity is nearly one order of
magnitude larger than the measured DC conductivity. This discrepancy can be
accounted for by including the pseudogap which removes at least 90% of the
spectral weight at the Fermi energy. Key to the pseudogap and many other
properties are the parallel straight Fermi surface sections which are highly
susceptible to nesting instabilities. These nesting instabilities produce
nanoscale fluctuating charge/orbital modulations which cooperate with
Jahn-Teller distortions and compete with the electron itinerancy favored by
double exchange
Sperm death and dumping in Drosophila
Mating with more than one male is the norm for females of many species. In addition to generating competition between the ejaculates of different males, multiple mating may allow females to bias sperm use. In Drosophila melanogaster, the last male to inseminate a female sires approximately 80% of subsequent progeny. Both sperm displacement, where resident sperm are removed from storage by the incoming ejaculate of the copulating male, and sperm incapacitation, where incoming seminal fluids supposedly interfere with resident sperm, have been implicated in this pattern of sperm use. But the idea of incapacitation is problematic because there are no known mechanisms by which an individual could damage rival sperm and not their own. Females also influence the process of sperm use, but exactly how is unclear. Here we show that seminal fluids do not kill rival sperm and that any 'incapacitation' is probably due to sperm ageing during sperm storage. We also show that females release stored sperm from the reproductive tract (sperm dumping) after copulation with a second male and that this requires neither incoming sperm nor seminal fluids. Instead, males may cause stored sperm to be dumped or females may differentially eject sperm from the previous mating
ARPES in the normal state of the cuprates: comparing the marginal Fermi liquid and spin fluctuation scenarios
We address the issue whether ARPES measurements of the spectral function near the Fermi surface in the normal state of near optimally doped
cuprates can distinguish between the marginal Fermi liquid scenario and the
spin-fluctuation scenario. We argue that the data for momenta near the Fermi
surface are equally well described by both theories, but this agreement is
nearly meaningless as in both cases one has to add to a large constant of yet unknown origin. We show that the data can be
well fitted by keeping only this constant term in the self-energy. To
distinguish between the two scenarios, one has to analyze the data away from
the Fermi surface, when the intrinsic piece in becomes
dominant.Comment: Accepted for publication in Europhysics Letters, Incorrect
interpretation of reference 10 correcte
Male-female interactions drive the (un)repeatability of copula duration in an insect.
Across the animal kingdom the duration of copulation varies enormously from a few seconds to several days. Functional explanations for this variation are largely embedded within sperm competition theory in which males modulate the duration of copula in order to optimise their fitness. However, copulation is the union of two protagonists which are likely to have separate and often conflicting reproductive interests, yet few experimental designs specifically assess the effect of male-female interactions on the duration of copulation. This can result in inexact assertions over which sex controls copulatory behaviour. Here we analyse the repeatability of copulatory behaviour in the seed beetle Callosobruchus maculatus to determine which sex exerts primary influence over copulation duration. In C. maculatus, copulation follows two distinct phases: an initial quiescent phase followed by a period of vigorous female kicking behaviour that culminates in the termination of copulation. When males or females copulated with several novel mates, copulatory behaviour was not significantly repeatable. By contrast, when males or females mated repeatedly with the same mate, copula duration was repeatable. These data suggest copulatory behaviour in C. maculatus to be largely the product of male-female interactions rather than the consistent, sex-specific modulation of copula duration of one protagonist in response to the phenotypic variation presented by the other protagonist
Sexual conflict over remating interval is modulated by the sex peptide pathway
Sexual conflict, in which the evolutionary interests of males and females diverge, shapes the evolution of reproductive systems across diverse taxa. Here we used the fruit fly to study sexual conflict in natural, three-way interactions comprising a female, her current and previous mates. We manipulated the potential for sexual conflict by using sex peptide receptor (SPR) null females and by varying remating from 3 to 48h, a period during which natural rematings frequently occur. SPR-lacking females do not respond to sex peptide transferred during mating and maintain virgin levels of high receptivity and low fecundity. In the absence of SPR there was a convergence of fitness interests, with all individuals gaining highest productivity at 5h remating. This suggests that the expression of sexual conflict was reduced. We observed an unexpected second male-specific advantage to early remating, resulting from an increase in the efficiency of second male sperm use. This early window of opportunity for exploitation by second males depended on the presence of SPR. The results suggest that the sex peptide pathway can modulate the expression of sexual conflict in this system, and show how variation in the selective forces that shape conflict and co-operation can be maintained
Dependence of the superconducting effective mass on doping in cuprates
Using a doping-determined multiband model spectrum of a "typical'' cuprate
the effective mass of the paired carriers is calculated on the whole doping
scale. Large values quench rapidly with leaving the very underdoped
region. Further slower diminishing of reproduces the trend towards
restoring the Fermi-liquid behaviour in cuprates with progressive doping. The
interband superconducting condensate density () shows similar behaviour to
the transition temperature and superconducting gaps. The ratio
has an expressed maximum close to optimal doping as also the thermodynamic
critical field. All the overlapping band components are intersected by the
chemical potential at this. The pairing strength and the phase coherence
develop simultaneously. In spite of its simplicity, the model describes the
behaviour of various cuprate characteristics on the doping scale.Comment: 9 pages, 5 figure
- …
