1,023 research outputs found

    Diffusion approximation for a processor sharing queue in heavy traffic

    Get PDF
    Consider a single server queue with renewal arrivals and i.i.d. service times in which the server operates under a processor sharing service discipline. To describe the evolution of this system, we use a measure valued process that keeps track of the residual service times of all jobs in the system at any given time. From this measure valued process, one can recover the traditional performance processes, including queue length and workload. We show that under mild assumptions, including standard heavy traffic assumptions, the (suitably rescaled) measure valued processes corresponding to a sequence of processor sharing queues converge in distribution to a measure valued diffusion process. The limiting process is characterized as the image under an appropriate lifting map, of a one-dimensional reflected Brownian motion. As an immediate consequence, one obtains a diffusion approximation for the queue length process of a processor sharing queue

    Heavy traffic limit for a processor sharing queue with soft deadlines

    Full text link
    This paper considers a GI/GI/1 processor sharing queue in which jobs have soft deadlines. At each point in time, the collection of residual service times and deadlines is modeled using a random counting measure on the right half-plane. The limit of this measure valued process is obtained under diffusion scaling and heavy traffic conditions and is characterized as a deterministic function of the limiting queue length process. As special cases, one obtains diffusion approximations for the lead time profile and the profile of times in queue. One also obtains a snapshot principle for sojourn times.Comment: Published at http://dx.doi.org/10.1214/105051607000000014 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Invariance of fluid limits for the Shortest Remaining Processing Time and Shortest Job First policies

    Full text link
    We consider a single-server queue with renewal arrivals and i.i.d. service times, in which the server employs either the preemptive Shortest Remaining Processing Time (SRPT) policy, or its non-preemptive variant, Shortest Job First (SJF). We show that for given stochastic primitives (initial condition, arrival and service processes), the model has the same fluid limit under either policy. In particular, we conclude that the well-known queue length optimality of preemptive SRPT is also achieved, asymptotically on fluid scale, by the simpler-to-implement SJF policy. We also conclude that on fluid scale, SJF and SRPT achieve the same performance with respect to response times of the longest-waiting jobs in the system.Comment: 24 page

    Two-stage high frequency pulse tube cooler for refrigeration at 25 K

    Full text link
    A two-stage Stirling-type U-shape pulse tube cryocooler driven by a 10 kW-class linear compressor was designed, built and tested. A special feature of the cold head is the absence of a heat exchanger at the cold end of the first stage, since the intended application requires no cooling power at this intermediate temperature. Simulations where done using Sage-software to find optimum operating conditions and cold head geometry. Flow-impedance matching was required to connect the compressor designed for 60 Hz operation to the 40 Hz cold head. A cooling power of 12.9 W at 25 K with an electrical input power of 4.6 kW has been achieved up to now. The lowest temperature reached is 13.7 K

    Heavy Traffic Limit for a Tandem Queue with Identical Service Times

    Get PDF
    We consider a two-node tandem queueing network in which the upstream queue is M/G/1 and each job reuses its upstream service requirement when moving to the downstream queue. Both servers employ the first-in-first-out policy. We investigate the amount of work in the second queue at certain embedded arrival time points, namely when the upstream queue has just emptied. We focus on the case of infinite-variance service times and obtain a heavy traffic process limit for the embedded Markov chain

    On the multiplicity of non-iterated periodic billiard trajectories

    Full text link
    We introduce the iteration theory for periodic billiard trajectories in a compact and convex domain of the Euclidean space, and we apply it to establish a multiplicity result for non-iterated trajectories.Comment: 21 pages, 2 figures; v3: final version, as publishe

    Diffusion limits for shortest remaining processing time queues

    Full text link
    We present a heavy traffic analysis for a single server queue with renewal arrivals and generally distributed i.i.d. service times, in which the server employs the Shortest Remaining Processing Time (SRPT) policy. Under typical heavy traffic assumptions, we prove a diffusion limit theorem for a measure-valued state descriptor, from which we conclude a similar theorem for the queue length process. These results allow us to make some observations on the queue length optimality of SRPT. In particular, they provide the sharpest illustration of the well-known tension between queue length optimality and quality of service for this policy.Comment: 19 pages; revised, fixed typos. To appear in Stochastic System

    Superrigidity for irreducible lattices and geometric splitting

    Get PDF
    We prove general superrigidity results for actions of irreducible lattices on CAT(0) spaces; first, in terms of the ideal boundary, and then for the intrinsic geometry (including for infinite-dimensional spaces). In particular, one obtains a new and self-contained proof of Margulis' superrigidity theorem for uniform irreducible lattices in non-simple groups. The proofs rely on simple geometric arguments, including a splitting theorem which can be viewed as an infinite-dimensional (and singular) generalization of the Lawson-Yau/Gromoll-Wolf theorem.Comment: Improved version of earlier preprint. Definitions 3, 5 and proof of Theorem 55 modifie
    corecore