121 research outputs found
COFS 3 multibody dynamics and control technology
One of the results from the model definition study showed that the maximum scale factor for a replica model is .25. This is dictated by the fixed dimensions of the Large Spacecraft Lab. Replica scaling laws were applied to simplified theoretical models of joints and the joint/tube/joint system. The practical interpretation of the results for the specific Space Station configuration under study yielded a number of conclusions which are briefly discussed. Detailed suspension analyses were conducted to evaluate the ability of the suspended scale model to emulate the dynamic behavior of the free-free Space Station. The results indicated only a slight preference for smaller scales. A candidate erectable Space Station joint was fabricated at full scale, 1/4 scale and 1/3 scale in order to assess the comparability of the scaled joints to the full scale behavior. Another important question discussed is how well the inherent damping characteristics of the scaled joints compare to those of the full scale joint. The preliminary definition study yielded three separate scale factor recommendations for the scale model
Passive stabilization for large space systems
The optimal tuning of multiple tuned-mass dampers for the transient vibration damping of large space structures is investigated. A multidisciplinary approach is used. Structural dynamic techniques are applied to gain physical insight into absorber/structure interaction and to optimize specific cases. Modern control theory and parameter optimization techniques are applied to the general optimization problem. A design procedure for multi-absorber multi-DOF vibration damping problems is presented. Classical dynamic models are extended to investigate the effects of absorber placement, existing structural damping, and absorber cross-coupling on the optimal design synthesis. The control design process for the general optimization problem is formulated as a linear output feedback control problem via the development of a feedback control canonical form. The techniques are applied to sample micro-g and pointing problems on the NASA dual keel space station
Passive damping augmentation for flexible structures
The present work concentrates on the application and extension of absorber design and optimization techniques to a multimode, multi-DOF, large space structure, namely the NASA space station. The principal issue addressed is the optimal tuning of several absorbers for the transient response of a multi-DOF system, including the effects of modal coupling, existing structural damping, absorber placement, and adsorber mass. The space station is subject to many transient disturbances such as docking, orbit reboost, crew motion, and payload slewing. A notable steady-state excitation source is the Science Research Centrifuge, which rotates at a frequency in the bandwidth of the primary structural modes. Because of the relatively advanced state of development of steady-state absorber design techniques, only the transient cases are considered in this study
A 14% efficient nonaqueous semiconductor/liquid junction solar cell
We describe the most efficient semiconductor/liquid junction solar cell reported to date. Under W‐halogen (ELH) illumination, the device is a 14% efficient two‐electrode solar cell fabricated from an n‐type silicon photoanode in contact with a nonaqueous electrolyte solution. The cell′s central feature is an ultrathin electrolyte layer which simultaneously reduces losses which result from electrode polarization, electrolyte light absorption, and electrolyte resistance. The thin electrolyte layer also eliminates the need for forced convection of the redox couple and allows for precise control over the amount of water (and other electrolyte impurities) exposed to the semiconductor. After one month of continuous operation under ELH light at 100 mW/cm^2, which corresponds to the passage of over 70 000 C/cm^2, thin‐layer cells retained over 90% of their efficiency. In addition, when made with Wacker Silso cast polycrystalline Si, cells yield an efficiency of 9.8% under simulated AMl illumination. The thin‐layer cells employ no external compensation yet surpass their corresponding experimental (three‐electrode) predecessors in efficiency
7.2% efficient polycrystalline silicon photoelectrode
After etching, n-type cast polycrystalline silicon photoanodes immersed in a solution of methanol and a substituted ferrocene reagent exhibit photoelectrode efficiencies of 7.2%±0.7% under simulated AM2 illumination. Scanning laser spot data indicate that the grain boundaries are active; however, the semiconductor/liquid contact does not display the severe shunting effects which are observed at a polycrystalline Si/Pt Schottky barrier. Evidence for an interfacial oxide on the operating polycrystalline Si photoanode is presented. Some losses in short circuit current can be ascribed to bulk semiconductor properties; however, despite these losses, photoanodes fabricated from polycrystalline substrates exhibit efficiencies comparable to those of single crystal material. Two major conclusions of our studies are that improved photoelectrode behavior in the polycrystalline silicon/methanol system will primarily result from changes in bulk electrode properties and from grain boundary passivation, and that Fermi level pinning by surface states does not prevent the design of efficient silicon-based liquid junctions
Divorce--The Effect of a Spouse\u27s Professional Degree on a Division of Marital Property and Award of Alimony
IR Barcode Reader
BrandWatch Technologies is a company based in Portland, Oregon that seek to detect counterfeit products in the supply chain. BrandWatch has created a taggant material, a physical marker, that can be printed over barcodes or added to the ink used to print the barcodes themselves. This material, while invisible to the naked eye, is detectable using technology that they have developed.
BrandWatch enlisted the help of a four man team of Cal Poly Mechanical Engineering students to combine this technology with that of a barcode scanner. The device, capable of scanning barcodes, detecting the presence of the taggant material, and relaying this information to the user is the end result of this project.
The device is easily modifiable to request a taggant read or barcode scan first. A user simply has to pull the trigger and is walked through the process of scanning and reading via LCD screen prompts on the back of the handheld device. The data collected (both barcode and the presence of the taggant) is stored in a csv file on a small USB drive on the back of the device. This can easily be removed to transfer the data to a computer at the end of a work day
Structures and materials technology needs for communications and remote sensing spacecraft
This report documents trade studies conducted from the perspective of a small spacecraft developer to determine and quantify the structures and structural materials technology development needs for future commercial and NASA small spacecraft to be launched in the period 1999 to 2005. Emphasis is placed on small satellites weighing less than 1800 pounds for two focus low-Earth orbit missions: commercial communications and remote sensing. The focus missions are characterized in terms of orbit, spacecraft size, performance, and design drivers. Small spacecraft program personnel were interviewed to determine their technology needs, and the results are summarized. A systems-analysis approach for quantifying the benefits of inserting advanced state-of-the-art technologies into a current reference, state-of-the-practice small spacecraft design is developed and presented. This approach is employed in a set of abbreviated trade studies to quantify the payoffs of using a subset of 11 advanced technologies selected from the interview results The 11 technology development opportunities are then ranked based on their relative payoff. Based on the strong potential for significant benefits, recommendations are made to pursue development of 8 and the 11 technologies. Other important technology development areas identified are recommended for further study
Development of the CSI phase-3 evolutionary model testbed
This report documents the development effort for the reconfiguration of the Controls-Structures Integration (CSI) Evolutionary Model (CEM) Phase-2 testbed into the CEM Phase-3 configuration. This step responds to the need to develop and test CSI technologies associated with typical planned earth science and remote sensing platforms. The primary objective of the CEM Phase-3 ground testbed is to simulate the overall on-orbit dynamic behavior of the EOS AM-1 spacecraft. Key elements of the objective include approximating the low-frequency appendage dynamic interaction of EOS AM-1, allowing for the changeout of components, and simulating the free-free on-orbit environment using an advanced suspension system. The fundamentals of appendage dynamic interaction are reviewed. A new version of the multiple scaling method is used to design the testbed to have the full-scale geometry and dynamics of the EOS AM-1 spacecraft, but at one-tenth the weight. The testbed design is discussed, along with the testing of the solar array, high gain antenna, and strut components. Analytical performance comparisons show that the CEM Phase-3 testbed simulates the EOS AM-1 spacecraft with good fidelity for the important parameters of interest
- …
