1,615 research outputs found
The Impact of Public Guarantees on Bank Risk Taking: Evidence from a Natural Experiment
In 2001, government guarantees for savings banks in Germany were removed following a law suit. We use this natural experiment to examine the effect of government guarantees on bank risk taking, using a large data set of matched bank/borrower information. The results suggest that banks whose government guarantee was removed reduced credit risk by cutting off the riskiest borrowers from credit. At the same time, the banks also increased interest rates on their remaining borrowers. The effects are economically large: the Z-Score of average borrowers increased by 7% and the average loan size declined by 13%. Remaining borrowers paid 57 basis points higher interest rates, despite their higher quality. Using a difference-in-differences approach we show that the effect is larger for banks that ex ante benefitted more from the guarantee. We show that both the credit quality of new customers improved (screening) and that the loans of existing riskier borrowers were less likely to be renewed (monitoring), after the removal of public guarantees. Public guarantees seem to be associated with substantial moral hazard effects.banking;public guarantees;credit risk;moral hazard
Quantum Monte Carlo Study of Strongly Correlated Electrons: Cellular Dynamical Mean-Field Theory
We study the Hubbard model using the Cellular Dynamical Mean-Field Theory
(CDMFT) with quantum Monte Carlo (QMC) simulations. We present the algorithmic
details of CDMFT with the Hirsch-Fye QMC method for the solution of the
self-consistently embedded quantum cluster problem. We use the one- and
two-dimensional half-filled Hubbard model to gauge the performance of CDMFT+QMC
particularly for small clusters by comparing with the exact results and also
with other quantum cluster methods. We calculate single-particle Green's
functions and self-energies on small clusters to study their size dependence in
one- and two-dimensions.Comment: 14 pages, 18 figure
Therapie bei Progression und Rezidiv des Ovarialkarzinoms
Secondary surgery after failure of primary treatment is a promising and reasonable option only for patients with a relapse-free interval of at least 6-12 months who should have ideally achieved a tumor-free status after primary therapy. As after primary surgery, size of residual tumor is the most significant predictor of survival after secondary surgery. Even in the case of multiple tumor sites, complete removal of the tumor can be achieved in nearly 30% of the patients. Treatment results are much better in specialized oncology centers with optimal interdisciplinary cooperation compared with smaller institutions. Chemotherapy can be used both for consolidation after successful secondary surgery and for palliation in patients with inoperable recurrent disease. Since paclitaxel has been integrated into first-line chemotherapy, there is no defined standard for second-line chemotherapy. Several cytotoxic agents have shown moderate activity in this setting, including treosulfan, epirubicin, and newer agents such as topotecan, gemcitabine, vinorelbine, and PEG(polyethylene glycol)-liposomal doxorubicin. Thus, the German Arbeitsgemeinschaft Gynakologische Onkologie (AGO) has initiated several randomized studies in patients with recurrent ovarian cancer in order to define new standards for second-line chemotherapy
Learning from the Success of MPI
The Message Passing Interface (MPI) has been extremely successful as a
portable way to program high-performance parallel computers. This success has
occurred in spite of the view of many that message passing is difficult and
that other approaches, including automatic parallelization and directive-based
parallelism, are easier to use. This paper argues that MPI has succeeded
because it addresses all of the important issues in providing a parallel
programming model.Comment: 12 pages, 1 figur
Beyond XSPEC: Towards Highly Configurable Analysis
We present a quantitative comparison between software features of the defacto
standard X-ray spectral analysis tool, XSPEC, and ISIS, the Interactive
Spectral Interpretation System. Our emphasis is on customized analysis, with
ISIS offered as a strong example of configurable software. While noting that
XSPEC has been of immense value to astronomers, and that its scientific core is
moderately extensible--most commonly via the inclusion of user contributed
"local models"--we identify a series of limitations with its use beyond
conventional spectral modeling. We argue that from the viewpoint of the
astronomical user, the XSPEC internal structure presents a Black Box Problem,
with many of its important features hidden from the top-level interface, thus
discouraging user customization. Drawing from examples in custom modeling,
numerical analysis, parallel computation, visualization, data management, and
automated code generation, we show how a numerically scriptable, modular, and
extensible analysis platform such as ISIS facilitates many forms of advanced
astrophysical inquiry.Comment: Accepted by PASP, for July 2008 (15 pages
Breakup of the aligned H molecule by xuv laser pulses: A time-dependent treatment in prolate spheroidal coordinates
We have carried out calculations of the triple-differential cross section for
one-photon double ionization of molecular hydrogen for a central photon energy
of ~eV, using a fully {\it ab initio}, nonperturbative approach to solve
the time-dependent \Schro equation in prolate spheroidal coordinates. The
spatial coordinates and are discretized in a finite-element
discrete-variable representation. The wave packet of the laser-driven
two-electron system is propagated in time through an effective short iterative
Lanczos method to simulate the double ionization of the hydrogen molecule. For
both symmetric and asymmetric energy sharing, the present results agree to a
satisfactory level with most earlier predictions for the absolute magnitude and
the shape of the angular distributions. A notable exception, however, concerns
the predictions of the recent time-independent calculations based on the
exterior complex scaling method in prolate spheroidal coordinates
[Phys.~Rev.~A~{\bf 82}, 023423 (2010)]. Extensive tests of the numerical
implementation were performed, including the effect of truncating the Neumann
expansion for the dielectronic interaction on the description of the initial
bound state and the predicted cross sections. We observe that the dominant
escape mode of the two photoelectrons dramatically depends upon the energy
sharing. In the parallel geometry, when the ejected electrons are collected
along the direction of the laser polarization axis, back-to-back escape is the
dominant channel for strongly asymmetric energy sharing, while it is completely
forbidden if the two electrons share the excess energy equally.Comment: 17 pages, 9 figure
An agent-based approach to immune modelling
This study focuses on trying to understand why the range
of experience with respect to HIV infection is so diverse, especially as regards to the latency period. The challenge is to determine what assumptions can be made about the nature of the experience of antigenic invasion and diversity that can be modelled, tested and argued plausibly.
To investigate this, an agent-based approach is used to extract high-level behaviour which cannot be described analytically from the set of interaction rules at the cellular level. A prototype model encompasses local variation in baseline properties contributing to the individual disease experience and is included in a network which mimics the chain of lymphatic nodes. Dealing with massively multi-agent systems requires major computational efforts. However, parallelisation methods are a natural
consequence and advantage of the multi-agent approach. These are implemented using the MPI library
Parallel TREE code for two-component ultracold plasma analysis
The TREE method has been widely used for long-range interaction {\it N}-body
problems. We have developed a parallel TREE code for two-component classical
plasmas with open boundary conditions and highly non-uniform charge
distributions. The program efficiently handles millions of particles evolved
over long relaxation times requiring millions of time steps. Appropriate domain
decomposition and dynamic data management were employed, and large-scale
parallel processing was achieved using an intermediate level of granularity of
domain decomposition and ghost TREE communication. Even though the
computational load is not fully distributed in fine grains, high parallel
efficiency was achieved for ultracold plasma systems of charged particles. As
an application, we performed simulations of an ultracold neutral plasma with a
half million particles and a half million time steps. For the long temporal
trajectories of relaxation between heavy ions and light electrons, large
configurations of ultracold plasmas can now be investigated, which was not
possible in past studies
- …
