266 research outputs found
Glacier melting during lava dome growth at Nevado de Toluca volcano (Mexico): Evidences of a major threat before main eruptive phases at ice-caped volcanoes
Nevado de Toluca volcano is one of the largest stratovolcanoes in the Trans-Mexican Volcanic Belt. During Late Pleistocene its activity was characterized by large dome growth and subsequent collapse emplacing large block and ash flow deposits, intercalated by Plinian eruptions. Morphological and paleoclimate studies at Nevado de Toluca and the surrounding area evidenced that the volcano was affected by extensive glaciation during Late Pleistocene and Holocene. During the older recognized glacial period (27-60 ka, MIS 3), the glacier was disturbed by the intense magmatic and hydrothermal activity related to two dome extrusion episodes (at 37 ka and 28 ka). Glacier reconstruction indicates maximum ice thickness of 90 m along main valleys, as at the Cano ravines, the major glacial valley on the northern slope of the volcano. Along this ravine, both 37 and 28 ka block-and-ash deposits are exposed, and they directly overlay a fluviatile sequence, up to 40 m-thick, which C-14 ages clearly indicate that their emplacement occurred just before the dome collapsed. These evidences point to a clear interaction between the growing dome and its hydrothermal system with the glacier. During dome growth, a large amount of melting water was released along major glacial valleys forming thick fluvioglacial sequences that were subsequently covered by the block-and-ash flow deposits generated by the collapse of the growing dome. Even though this scenario is no longer possible at the Nevado de Toluca volcano, the data presented here indicate that special attention should be paid to the possible inundation areas from fluviatile/lahar activity prior to the main magmatic eruption at ice-capped volcanoes. (C) 2015 Elsevier B.V. All rights reserved
Immunohistochemical analysis of adhesive papillae of Clavelina lepadiformis (Müller, 1776) and Clavelina phlegraea (Salfi, 1929) (Tunicata, Ascidiacea)
Almost all ascidian larvae bear three mucus secreting and sensory organs, the adhesive papillae, at the anterior end of the trunk, which play an important role during the settlement phase. The morphology and the cellular composition of these organs varies greatly in the different species. The larvae of the Clavelina genus bear simple bulbous papillae, which are considered to have only a secretory function. We analysed the adhesive papillae of two species belonging to this genus, C. lepadiformis and C. phlegraea, by histological sections and by immunolocalisation of β-tubulin and serotonin, in order to better clarify the cellular composition of these organs. We demonstrated that they contain at least two types of neurons: central neurons, bearing microvilli, and peripheral ciliated neurons. Peripheral neurons of C. lepadiformis contain serotonin. We suggest that these two neurons play different roles during settlement: the central ones may be chemo- or mechanoreceptors that sense the substratum, and the peripheral ones may be involved in the mechanism that triggers metamorphosis
Type I and type II interferons inhibit both basal and tumor necrosis factor-α-induced CXCL8 secretion in primary cultures of human thyrocytes.
Interferons (IFNs) and tumor necrosis factor-α (TNF-α) cooperate in activating several inflammation-related genes, which sustain chronic inflammation in autoimmune thyroid disease (AITD). Much is known about the positive signaling of IFNs to activate gene expression in AITD, while the mechanisms by which IFNs negatively regulate genes remain less studied. While IFNs inhibit CXCL8 secretion in several human cell types, their effects on thyroid cells were not evaluated. Our aim was to study the interplay between TNF-α and type I or type II IFNs on CXCL8 secretion by human thyroid cells. CXCL8 was measured in supernatants of primary cultures of thyroid cells basally and after a 24-h incubation with TNF-α. CXCL8 was detected in thyroid cell supernatants in basal conditions (96.2±23.5 pg/mL) being significantly increased (784.7±217.3 pg/mL; PIFN-β>IFN-α. This study demonstrates that type I and type II IFNs downregulate both basal and TNF-α-induced CXCL8 secretion by human thyrocytes, IFN-γ being the most powerful inhibitor. Future studies aimed at a better comprehension of the interplay between CXCL8 and thyroid diseases appear worthwhile
The Pleistocene tectono-stratigraphic evolution of the northern Po Plain (Italy) around the Castenedolo and Ciliverghe hillocks
We studied the Pleistocene subsurface stratigraphy of an area in the northern Po Plain around the isolated tectonic hillocks of Castenedolo and Ciliverghe (Brescia, Italy) in order to estimate their long-term rates of tectonic deformation. Integrated stratigraphy of a new 100-m-long core (RL13) allowed better definition of the regional Y (0.45 Ma) and R (0.87 Ma) surfaces and the related magnetostratigraphically calibrated PS1, PS2, and PS3 depositional sequences. The Y surface in the RL13 core was placed at the base of the PS3 proximal braided river system that was deposited during middle Pleistocene within the Brunhes chron. The R surface is considered to be eroded within the PS2 braid-plain deposits at ca. 0.87 Ma between the top of Jaramillo subchron and the Bruhnes chron during the late Early Pleistocene.
Based on different datasets, we evaluated the sedimentation rate, which has decreased from 0.09 mm/yr with deposition of PS2, to 0.06 mm/yr with deposition of PS3. The tectonic uplift, with an average rate of ~0.1 mm/yr in the last ca. 0.87 Ma, is interpreted to be associated with a fault and related fault-propagation folding. The Castenedolo and Ciliverghe hillocks then formed due to tectonic uplift during a change in the sedimentation regime since 0.45 Ma
Modelling Lava Flow to Assess Hazard on Mount Etna (Italy). From Geological Data to a Preliminary Hazard Map
In this paper we present a systematic approach to the development of the lava flow hazard map forthe Mount Etna, the most important active volcano in Europe. The basic idea is to determine the hazard zonesby simulating the lava flows originated from a number of sample points localized in regions at high densityof vents, called eruption zones. The key choice is the adoption of a probabilistic model for the simulation ofthe lava flow. In the paper we outline the characteristics of the model, called ELFM, and how it has beenvalidated. On the other side, for the determination of the eruption zones, which likely contain the points offuture lava flows emissions, we propose an approach based on data mining techniques
Corrigendum to ‘Structural analysis and fluid geochemistry as tools to assess the potential of the Tocomar geothermal system, Central Puna (Argentina)’ [Geothermics Volume 98, January 2022, 102297] (Geothermics (2022) 98, (S0375650521002546), (10.1016/j.geothermics.2021.102297))
Process development and validation of expanded regulatory T cells for prospective applications: an example of manufacturing a personalized advanced therapy medicinal product
Background: A growing number of clinical trials have shown that regulatory T (Treg) cell transfer may have a favorable effect on the maintenance of self-tolerance and immune homeostasis in different conditions such as graft-versus-host disease (GvHD), solid organ transplantation, type 1 diabetes, and others. In this context, the availability of a robust manufacturing protocol that is able to produce a sufficient number of functional Treg cells represents a fundamental prerequisite for the success of a cell therapy clinical protocol. However, extended workflow guidelines for nonprofit manufacturers are currently lacking. Despite the fact that different successful manufacturing procedures and cell products with excellent safety profiles have been reported from early clinical trials, the selection and expansion protocols for Treg cells vary a lot. The objective of this study was to validate a Good Manufacturing Practice (GMP)-compliant protocol for the production of Treg cells that approaches the whole process with a risk-management methodology, from process design to completion of final product development. High emphasis was given to the description of the quality control (QC) methodologies used for the in-process and release tests (sterility, endotoxin test, mycoplasma, and immunophenotype). Results: The GMP-compliant protocol defined in this work allows at least 4.11
7 109 Treg cells to be obtained with an average purity of 95.75 \ub1 4.38% and can be used in different clinical settings to exploit Treg cell immunomodulatory function. Conclusions: These results could be of great use for facilities implementing GMP-compliant cell therapy protocols of these cells for different conditions aimed at restoring the Treg cell number and function, which may slow the progression of certain diseases
Geology of La Reforma caldera complex, Baja California, Mexico
A new geological map at 1:50,000 scale of La Reforma Caldera Complex has been produced applying modern survey methodologies to volcanic areas. This map aims to represent a reliable and objective tool to understand the geological evolution of the region. La Reforma Caldera Complex is a Pleistocene nested caldera located in the central part of the Baja California peninsula, Mexico. The twelve formations defined within the Quaternary volcanic record were grouped into three phases (pre-caldera, caldera, and post-caldera). The pre-caldera phase (>1.35 Ma) is characterized by scattered eruptions, mostly occurred in submarine environment. The caldera phase (1.35–0.96 Ma) groups several distinct explosive and effusive eruptions that formed the present-day caldera depression. The post caldera phase includes scattered effusive eruptions (ended at 0.28 Ma) and resurgence, characterized by several hundred meters of uplift of the central block within the caldera depression
Potential of remote sensing and open street data for flood mapping in poorly gauged areas: a case study in Gonaives, Haiti
- …
