5,804 research outputs found
Non-Oberbeck-Boussinesq effects in two-dimensional Rayleigh-Benard convection in glycerol
We numerically analyze Non-Oberbeck-Boussinesq (NOB) effects in
two-dimensional Rayleigh-Benard flow in glycerol, which shows a dramatic change
in the viscosity with temperature. The results are presented both as functions
of the Rayleigh number (Ra) up to (for fixed temperature difference
between the top and bottom plates) and as functions of
"non-Oberbeck-Boussinesqness'' or "NOBness'' () up to 50 K (for fixed
Ra). For this large NOBness the center temperature is more than 5 K
larger than the arithmetic mean temperature between top and bottom plate
and only weakly depends on Ra. To physically account for the NOB deviations of
the Nusselt numbers from its Oberbeck-Boussinesq values, we apply the
decomposition of into the product of two effects, namely
first the change in the sum of the top and bottom thermal BL thicknesses, and
second the shift of the center temperature as compared to . While
for water the origin of the deviation is totally dominated by the second
effect (cf. Ahlers et al., J. Fluid Mech. 569, pp. 409 (2006)) for glycerol the
first effect is dominating, in spite of the large increase of as compared
to .Comment: 6 pages, 7 figure
Attachment working models as unconscious structures: An experimental test
Internal working models of attachment (IWMs) are presumed to be largely unconscious representations of childhood attachment experiences. Several instruments have been developed to assess IWMs; some of them are based on self-report and others on narrative interview techniques. This study investigated the capacity of a self-report measure, the Inventory of Parent and Peer Attachment (IPPA; Armsden & Greenberg, 1987), and of a narrative interview method, the Adult Attachment Interview (AAI; George, Kaplan, & Main, 1985), to measure unconscious attachment models. We compared scores on the two attachment instruments to response latencies in an attachment priming task. It was shown that attachment organisation assessed by the AAI correlates with priming effects, whereas the IPPA scales were inversely or not related to priming. The results are interpreted as support for the assumption that the AAI assesses, to a certain degree, unconscious working models of attachment
Extended phase diagram of the Lorenz model
The parameter dependence of the various attractive solutions of the three
variable nonlinear Lorenz model equations for thermal convection in
Rayleigh-B\'enard flow is studied. Its bifurcation structure has commonly been
investigated as a function of r, the normalized Rayleigh number, at fixed
Prandtl number \sigma. The present work extends the analysis to the entire
(r,\sigma) parameter plane. An onion like periodic pattern is found which is
due to the alternating stability of symmetric and non-symmetric periodic
orbits. This periodic pattern is explained by considering non-trivial limits of
large r and \sigma. In addition to the limit which was previously analyzed by
Sparrow, we identify two more distinct asymptotic regimes in which either
\sigma/r or \sigma^2/r is constant. In both limits the dynamics is
approximately described by Airy functions whence the periodicity in parameter
space can be calculated analytically. Furthermore, some observations about
sequences of bifurcations and coexistence of attractors, periodic as well as
chaotic, are reported.Comment: 36 pages, 20 figure
Classification of phase transitions of finite Bose-Einstein condensates in power law traps by Fisher zeros
We present a detailed description of a classification scheme for phase
transitions in finite systems based on the distribution of Fisher zeros of the
canonical partition function in the complex temperature plane. We apply this
scheme to finite Bose-systems in power law traps within a semi-analytic
approach with a continuous one-particle density of states for different values of and to a three dimensional harmonically
confined ideal Bose-gas with discrete energy levels. Our results indicate that
the order of the Bose-Einstein condensation phase transition sensitively
depends on the confining potential.Comment: 7 pages, 9 eps-figures, For recent information on physics of small
systems see "http://www.smallsystems.de
Molecular hydrogen as baryonic dark matter
High-angular resolution CO observations of small-area molecular structures
(SAMS) are presented. The feature-less structures seen in the single-dish
measurements break up into several smaller clumps in the interferometer map. At
an adopted distance of 100pc their sizes are of order a few hundred AU, some of
which are still unresolved at an angular resolution of about 3". The clumps
have a fractal structure with a fractal index between 1.7 and 2.0. Their
kinetic temperature is between 7K and 18K. Adopting standard conversion factors
masses are about 1/10 Jupiter-masses for individual clumps and densities are
higher than 20000cm^{-3}. The clumps are highly overpressured and it is unknown
what creates or maintains such structures.Comment: 8 pages, 1 figure, accepted by Astrophysical Journal Letter
Coherent transport in a two-electron quantum dot molecule
We investigate the dynamics of two interacting electrons confined to a pair
of coupled quantum dots driven by an external AC field. By numerically
integrating the two-electron Schroedinger equation in time, we find that for
certain values of the strength and frequency of the AC field we can cause the
electrons to be localised within the same dot, in spite of the Coulomb
repulsion between them. Reducing the system to an effective two-site model of
Hubbard type and applying Floquet theory leads to a detailed understanding of
this effect. This demonstrates the possibility of using appropriate AC fields
to manipulate entangled states in mesoscopic devices on extremely short
timescales, which is an essential component of practical schemes for quantum
information processing.Comment: 4 pages, 3 figures; the section dealing with the perturbative
treatment of the Floquet states has been substantially expanded to make it
easier to follo
Optimality-based bound contraction with multiparametric disaggregation for the global optimization of mixed-integer bilinear problems
We address nonconvex mixed-integer bilinear problems where the main challenge is the computation of a tight upper bound for the objective function to be maximized. This can be obtained by using the recently developed concept of multiparametric disaggregation following the solution of a mixed-integer linear relaxation of the bilinear problem. Besides showing that it can provide tighter bounds than a commercial global optimization solver within a given computational time, we propose to also take advantage of the relaxed formulation for contracting the variables domain and further reduce the optimality gap. Through the solution of a real-life case study from a hydroelectric power system, we show that this can be an efficient approach depending on the problem size. The relaxed formulation from multiparametric formulation is provided for a generic numeric representation system featuring a base between 2 (binary) and 10 (decimal)
Semi-autonomous Intersection Collision Avoidance through Job-shop Scheduling
In this paper, we design a supervisor to prevent vehicle collisions at
intersections. An intersection is modeled as an area containing multiple
conflict points where vehicle paths cross in the future. At every time step,
the supervisor determines whether there will be more than one vehicle in the
vicinity of a conflict point at the same time. If there is, then an impending
collision is detected, and the supervisor overrides the drivers to avoid
collision. A major challenge in the design of a supervisor as opposed to an
autonomous vehicle controller is to verify whether future collisions will occur
based on the current drivers choices. This verification problem is particularly
hard due to the large number of vehicles often involved in intersection
collision, to the multitude of conflict points, and to the vehicles dynamics.
In order to solve the verification problem, we translate the problem to a
job-shop scheduling problem that yields equivalent answers. The job-shop
scheduling problem can, in turn, be transformed into a mixed-integer linear
program when the vehicle dynamics are first-order dynamics, and can thus be
solved by using a commercial solver.Comment: Submitted to Hybrid Systems: Computation and Control (HSCC) 201
Aging and intermittency in a p-spin model of a glass
We numerically analyze the statistics of the heat flow between an aging
system and its thermal bath, following a method proposed and tested for a
spin-glass model in a recent Letter (P. Sibani and H.J. Jensen, Europhys.
Lett.69, 563 (2005)). The present system, which lacks quenched randomness,
consists of Ising spins located on a cubic lattice, with each plaquette
contributing to the total energy the product of the four spins located at its
corners. Similarly to our previous findings, energy leaves the system in rare
but large, so called intermittent, bursts which are embedded in reversible and
equilibrium-like fluctuations of zero average. The intermittent bursts, or
quakes, dissipate the excess energy trapped in the initial state at a rate
which falls off with the inverse of the age. This strongly heterogeneous
dynamical picture is explained using the idea that quakes are triggered by
energy fluctuations of record size, which occur independently within a number
of thermalized domains. From the temperature dependence of the width of the
reversible heat fluctuations we surmise that these domains have an exponential
density of states. Finally, we show that the heat flow consists of a
temperature independent term and a term with an Arrhenius temperature
dependence. Microscopic dynamical and structural information can thus be
extracted from numerical intermittency data. This type of analysis seems now
within the reach of time resolved micro-calorimetry techniques.Comment: 9 pages, 6 figures, europhysics letter style, to appear in Physical
Review
- …
