4,394 research outputs found
Modeling laser wakefield accelerators in a Lorentz boosted frame
Modeling of laser-plasma wakefield accelerators in an optimal frame of
reference \cite{VayPRL07} is shown to produce orders of magnitude speed-up of
calculations from first principles. Obtaining these speedups requires
mitigation of a high-frequency instability that otherwise limits effectiveness
in addition to solutions for handling data input and output in a
relativistically boosted frame of reference. The observed high-frequency
instability is mitigated using methods including an electromagnetic solver with
tunable coefficients, its extension to accomodate Perfectly Matched Layers and
Friedman's damping algorithms, as well as an efficient large bandwidth digital
filter. It is shown that choosing the frame of the wake as the frame of
reference allows for higher levels of filtering and damping than is possible in
other frames for the same accuracy. Detailed testing also revealed
serendipitously the existence of a singular time step at which the instability
level is minimized, independently of numerical dispersion, thus indicating that
the observed instability may not be due primarily to Numerical Cerenkov as has
been conjectured. The techniques developed for Cerenkov mitigation prove
nonetheless to be very efficient at controlling the instability. Using these
techniques, agreement at the percentage level is demonstrated between
simulations using different frames of reference, with speedups reaching two
orders of magnitude for a 0.1 GeV class stages. The method then allows direct
and efficient full-scale modeling of deeply depleted laser-plasma stages of 10
GeV-1 TeV for the first time, verifying the scaling of plasma accelerators to
very high energies. Over 4, 5 and 6 orders of magnitude speedup is achieved for
the modeling of 10 GeV, 100 GeV and 1 TeV class stages, respectively
Speeding up simulations of relativistic systems using an optimal boosted frame
It can be computationally advantageous to perform computer simulations in a
Lorentz boosted frame for a certain class of systems. However, even if the
computer model relies on a covariant set of equations, it has been pointed out
that algorithmic difficulties related to discretization errors may have to be
overcome in order to take full advantage of the potential speedup. We summarize
the findings, the difficulties and their solutions, and show that the technique
enables simulations important to several areas of accelerator physics that are
otherwise problematic, including self-consistent modeling in three-dimensions
of laser wakefield accelerator stages at energies of 10 GeV and above.Comment: To be published in the proceedings of DPF-2009, Detroit, MI, July
2009, eConf C09072
Equity gap? - Which equity gap? On the financing structure of Germany's Mittelstand
This paper examines the financing structure of small and medium-sized enterprises (SMEs) in Germany and questions whether an equity gap - or, more generally, a financing gap -exists. Reviewing the literature and available data sources, we find that financing constraints seem to affect, if at all, only a very small subgroup among highly growth-oriented firms. We do not detect any structural problems in average SME's capital structure. Rather, German Mittelstand firms appear to be non-growth oriented and content with their financing decisions. While the relationship-based German banking system helps to minimize the risk of credit rationing, trade credit offers an additional, stable form of liquidity insurance. Highly innovative firms with strong growth potential, on the other hand, do seize the opportunity to tap unconventional means of financing (e.g. mezzanine capital) and appear very successful in doing so
Definition and classification of the histamine-release response to drugs in anaesthesia and surgery: studies in the conscious human subject
Would You Choose to be Happy? Tradeoffs Between Happiness and the Other Dimensions of Life in a Large Population Survey
A large literature documents the correlates and causes of subjective well-being, or happiness. But few studies have investigated whether people choose happiness. Is happiness all that people want from life, or are they willing to sacrifice it for other attributes, such as income and health? Tackling this question has largely been the preserve of philosophers. In this article, we find out just how much happiness matters to ordinary citizens. Our sample consists of nearly 13,000 members of the UK and US general populations. We ask them to choose between, and make judgments over, lives that are high (or low) in different types of happiness and low (or high) in income, physical health, family, career success, or education. We find that people by and large choose the life that is highest in happiness but health is by far the most important other concern, with considerable numbers of people choosing to be healthy rather than happy. We discuss some possible reasons for this preference
Quantum Collective QCD String Dynamics
The string breaking model of particle production is extended in order to help
explain the transverse momentum distribution in elementary collisions. Inspired
by an idea of Bialas', we treat the string using a collective coordinate
approach. This leads to a chromo-electric field strength which fluctuates, and
in turn implies that quarks are produced according to a thermal distribution.Comment: 6 pages. Presented at SQM 2006. Submitted to J. Phys. G for
publication in proceedings. Vers. 2: Minor revisions; final hadron spectrum
calculation include
Effects of Hyperbolic Rotation in Minkowski Space on the Modeling of Plasma Accelerators in a Lorentz Boosted Frame
Laser driven plasma accelerators promise much shorter particle accelerators
but their development requires detailed simulations that challenge or exceed
current capabilities. We report the first direct simulations of stages up to 1
TeV from simulations using a Lorentz boosted calculation frame resulting in a
million times speedup, thanks to a frame boost as high as gamma=1300. Effects
of the hyperbolic rotation in Minkowski space resulting from the frame boost on
the laser propagation in the plasma is shown to be key in the mitigation of a
numerical instability that was limiting previous attempts
Subtraction of test mass angular noise in the LISA Technology Package interferometer
We present recent sensitivity measurements of the LISA Technology Package
interferometer with articulated mirrors as test masses, actuated by
piezo-electric transducers. The required longitudinal displacement resolution
of 9 pm/sqrt[Hz] above 3 mHz has been demonstrated with an angular noise that
corresponds to the expected in on-orbit operation. The excess noise
contribution of this test mass jitter onto the sensitive displacement readout
was completely subtracted by fitting the angular interferometric data streams
to the longitudinal displacement measurement. Thus, this cross-coupling
constitutes no limitation to the required performance of the LISA Technology
Package interferometry.Comment: Applied Physics B - Lasers and Optics (2008
Kohn-Luttinger instability of the t-t' Hubbard model in two dimensions: variational approach
An effective Hamiltonian for the Kohn-Luttinger superconductor is constructed
and solved in the BCS approximation. The method is applied to the t-t' Hubbard
model in two dimensions with the following results: (i) The superconducting
phase diagram at half filling is shown to provide a weak-coupling analog of the
recently proposed spin liquid state in the J_1-J_2 Heisenberg model. (ii) In
the parameter region relevant for the cuprates we have found a nontrivial
energy dependence of the gap function in the dominant d-wave pairing sector.
The hot spot effect in the angular dependence of the superconducting gap is
shown to be quite weak
- …
