125 research outputs found

    A Meta-Analysis of Microarray Gene Expression in Mouse Stem Cells: Redefining Stemness

    Get PDF
    While much progress has been made in understanding stem cell (SC) function, a complete description of the molecular mechanisms regulating SCs is not yet established. This lack of knowledge is a major barrier holding back the discovery of therapeutic uses of SCs. We investigated the value of a novel meta-analysis of microarray gene expression in mouse SCs to aid the elucidation of regulatory mechanisms common to SCs and particular SC types.We added value to previously published microarray gene expression data by characterizing the promoter type likely to regulate transcription. Promoters of up-regulated genes in SCs were characterized in terms of alternative promoter (AP) usage and CpG-richness, with the aim of correlating features known to affect transcriptional control with SC function. We found that SCs have a higher proportion of up-regulated genes using CpG-rich promoters compared with the negative controls. Comparing subsets of SC type with the controls a slightly different story unfolds. The differences between the proliferating adult SCs and the embryonic SCs versus the negative controls are statistically significant. Whilst the difference between the quiescent adult SCs compared with the negative controls is not. On examination of AP usage, no difference was observed between SCs and the controls. However, comparing the subsets of SC type with the controls, the quiescent adult SCs are found to up-regulate a larger proportion of genes that have APs compared to the controls and the converse is true for the proliferating adult SCs and the embryonic SCs.These findings suggest that looking at features associated with control of transcription is a promising future approach for characterizing “stemness” and that further investigations of stemness could benefit from separate considerations of different SC states. For example, “proliferating-stemness” is shown here, in terms of promoter usage, to be distinct from “quiescent-stemness”

    Autoregulation of the Drosophila Noncoding roX1 RNA Gene

    Get PDF
    Most genes along the male single X chromosome in Drosophila are hypertranscribed about two-fold relative to each of the two female X chromosomes. This is accomplished by the MSL (male-specific lethal) complex that acetylates histone H4 at lysine 16. The MSL complex contains two large noncoding RNAs, roX1 (RNA on X) and roX2, that help target chromatin modifying enzymes to the X. The roX RNAs are functionally redundant but differ in size, sequence, and transcriptional control. We wanted to find out how roX1 production is regulated. Ectopic DC can be induced in wild-type (roX1+ roX2+) females if we provide a heterologous source of MSL2. However, in the absence of roX2, we found that roX1 expression failed to come on reliably. Using an in situ hybridization probe that is specific only to endogenous roX1, we found that expression was restored if we introduced either roX2 or a truncated but functional version of roX1. This shows that pre-existing roX RNA is required to positively autoregulate roX1 expression. We also observed massive cis spreading of the MSL complex from the site of roX1 transcription at its endogenous location on the X chromosome. We propose that retention of newly assembled MSL complex around the roX gene is needed to drive sustained transcription and that spreading into flanking chromatin contributes to the X chromosome targeting specificity. Finally, we found that the gene encoding the key male-limited protein subunit, msl2, is transcribed predominantly during DNA replication. This suggests that new MSL complex is made as the chromatin template doubles. We offer a model describing how the production of roX1 and msl2, two key components of the MSL complex, are coordinated to meet the dosage compensation demands of the male cell

    NF-Y Dependent Epigenetic Modifications Discriminate between Proliferating and Postmitotic Tissue

    Get PDF
    The regulation of gene transcription requires posttranslational modifications of histones that, in concert with chromatin remodeling factors, shape the structure of chromatin. It is currently under intense investigation how this structure is modulated, in particular in the context of proliferation and differentiation. Compelling evidence suggests that the transcription factor NF-Y acts as a master regulator of cell cycle progression, activating the transcription of many cell cycle regulatory genes. However, the underlying molecular mechanisms are not yet completely understood. Here we show that NF-Y exerts its effect on transcription through the modulation of the histone “code”. NF-Y colocalizes with nascent RNA, while RNA polymerase II is I phosphorylated on serine 2 of the YSPTSPS repeats within its carboxyterminal domain and histones are carrying modifications that represent activation signals of gene expression (H3K9ac and PAN-H4ac). Comparing postmitotic muscle tissue from normal mice and proliferating muscles from mdx mice, we demonstrate by chromatin immunoprecipitation (ChIP) that NF-Y DNA binding activity correlates with the accumulation of acetylated histones H3 and H4 on promoters of key cell cycle regulatory genes, and with their active transcription. Accordingly, p300 is recruited onto the chromatin of NF-Y target genes in a NF-Y-dependent manner, as demonstrated by Re-ChIP. Conversely, the loss of NF-Y binding correlates with a decrease of acetylated histones, the recruitment of HDAC1, and a repressed heterochromatic state with enrichment of histones carrying modifications known to mediate silencing of gene expression (H3K9me3, H3K27me2 and H4K20me3). As a consequence, NF-Y target genes are downregulated in this context. In conclusion, our data indicate a role of NF-Y in modulating the structure and transcriptional competence of chromatin in vivo and support a model in which NF-Y-dependent histone “code” changes contribute to the proper discrimination between proliferating and postmitotic cells in vivo and in vitro

    X chromosomal regulation in flies: when less is more

    Get PDF
    In Drosophila, dosage compensation of the single male X chromosome involves upregulation of expression of X linked genes. Dosage compensation complex or the male specific lethal (MSL) complex is intimately involved in this regulation. The MSL complex members decorate the male X chromosome by binding on hundreds of sites along the X chromosome. Recent genome wide analysis has brought new light into X chromosomal regulation. It is becoming increasingly clear that although the X chromosome achieves male specific regulation via the MSL complex members, a number of general factors also impinge on this regulation. Future studies integrating these aspects promise to shed more light into this epigenetic phenomenon

    Selective development of myogenic mesenchymal cells from human embryonic and induced pluripotent stem cells.

    Get PDF
    Human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are promising sources for the cell therapy of muscle diseases and can serve as powerful experimental tools for skeletal muscle research, provided an effective method to induce skeletal muscle cells is established. However, the current methods for myogenic differentiation from human ES cells are still inefficient for clinical use, while myogenic differentiation from human iPS cells remains to be accomplished. Here, we aimed to establish a practical differentiation method to induce skeletal myogenesis from both human ES and iPS cells. To accomplish this goal, we developed a novel stepwise culture method for the selective expansion of mesenchymal cells from cell aggregations called embryoid bodies. These mesenchymal cells, which were obtained by dissociation and re-cultivation of embryoid bodies, uniformly expressed CD56 and the mesenchymal markers CD73, CD105, CD166, and CD29, and finally differentiated into mature myotubes in vitro. Furthermore, these myogenic mesenchymal cells exhibited stable long-term engraftment in injured muscles of immunodeficient mice in vivo and were reactivated upon subsequent muscle damage, increasing in number to reconstruct damaged muscles. Our simple differentiation system facilitates further utilization of ES and iPS cells in both developmental and pathological muscle research and in serving as a practical donor source for cell therapy of muscle diseases

    Learning and Motivational Characteristics of Boys with AD/HD and/or Giftedness

    Full text link
    This study compared the academic and learning characteristics of students with (a) Attention Deficit/Hyperactivity Disorder (AD/HD), (b) giftedness, and (c) giftedness with AD/HD, and examines specific a priori questions. The information reported by teachers, parents, and children was analyzed with a multiple-case design with constant comparative procedures within and across groups. The results indicated that giftedness conferred benefits related to specific talents but did not offer protection from the negative outcomes of AD/HD, such as inattention and homework problems. The learning and motivational profiles of each group were discussed in terms of implications for differential diagnosis and research and for teaching children with AD/HD and giftedness in general and special settings. </jats:p
    corecore