297 research outputs found

    Randomized, Noncomparative, Phase II Trial of Early Switch From Docetaxel to Cabazitaxel or Vice Versa, With Integrated Biomarker Analysis, in Men With Chemotherapy-Naïve, Metastatic, Castration-Resistant Prostate Cancer

    Get PDF
    Purpose The TAXYNERGY trial ( ClinicalTrials.gov identifier: NCT01718353) evaluated clinical benefit from early taxane switch and circulating tumor cell (CTC) biomarkers to interrogate mechanisms of sensitivity or resistance to taxanes in men with chemotherapy-naïve, metastatic, castration-resistant prostate cancer. Patients and Methods Patients were randomly assigned 2:1 to docetaxel or cabazitaxel. Men who did not achieve ≥ 30% prostate-specific antigen (PSA) decline by cycle 4 (C4) switched taxane. The primary clinical endpoint was confirmed ≥ 50% PSA decline versus historical control (TAX327). The primary biomarker endpoint was analysis of post-treatment CTCs to confirm the hypothesis that clinical response was associated with taxane drug-target engagement, evidenced by decreased percent androgen receptor nuclear localization (%ARNL) and increased microtubule bundling. Results Sixty-three patients were randomly assigned to docetaxel (n = 41) or cabazitaxel (n = 22); 44.4% received prior potent androgen receptor-targeted therapy. Overall, 35 patients (55.6%) had confirmed ≥ 50% PSA responses, exceeding the historical control rate of 45.4% (TAX327). Of 61 treated patients, 33 (54.1%) had ≥ 30% PSA declines by C4 and did not switch taxane, 15 patients (24.6%) who did not achieve ≥ 30% PSA declines by C4 switched taxane, and 13 patients (21.3%) discontinued therapy before or at C4. Of patients switching taxane, 46.7% subsequently achieved ≥ 50% PSA decrease. In 26 CTC-evaluable patients, taxane-induced decrease in %ARNL (cycle 1 day 1 v cycle 1 day 8) was associated with a higher rate of ≥ 50% PSA decrease at C4 ( P = .009). Median composite progression-free survival was 9.1 months (95% CI, 4.9 to 11.7 months); median overall survival was not reached at 14 months. Common grade 3 or 4 adverse events included fatigue (13.1%) and febrile neutropenia (11.5%). Conclusion The early taxane switch strategy was associated with improved PSA response rates versus TAX327. Taxane-induced shifts in %ARNL may serve as an early biomarker of clinical benefit in patients treated with taxanes

    A partial form of inherited human USP18 deficiency underlies infection and inflammation

    Get PDF
    International audienceHuman USP18 is an interferon (IFN)-stimulated gene product and a negative regulator of type I IFN (IFN-I) signaling. It also removes covalently linked ISG15 from proteins, in a process called deISGylation. In turn, ISG15 prevents USP18 from being degraded by the proteasome. Autosomal recessive complete USP18 deficiency is life-threatening in infancy owing to uncontrolled IFN-I–mediated autoinflammation. We report three Moroccan siblings with autoinflammation and mycobacterial disease who are homozygous for a new USP18 variant. We demonstrate that the mutant USP18 (p.I60N) is normally stabilized by ISG15 and efficient for deISGylation but interacts poorly with the receptor-anchoring STAT2 and is impaired in negative regulation of IFN-I signaling. We also show that IFN-γ–dependent induction of IL-12 and IL-23 is reduced owing to IFN-I–mediated impairment of myeloid cells to produce both cytokines. Thus, insufficient negative regulation of IFN-I signaling by USP18-I60N underlies a specific type I interferonopathy, which impairs IL-12 and IL-23 production by myeloid cells, thereby explaining predisposition to mycobacterial disease

    Systemic Type I IFN Inflammation in Human ISG15 Deficiency Leads to Necrotizing Skin Lesions

    Get PDF
    Most monogenic disorders have a primary clinical presentation. Inherited ISG15 deficiency, however, has manifested with two distinct presentations to date: susceptibility to mycobacterial disease and intracranial calcifications from hypomorphic interferon-II (IFN-II) production and excessive IFN-I response, respectively. Accordingly, these patients were managed for their infectious and neurologic complications. Herein, we describe five new patients with six novel ISG15 mutations presenting with skin lesions who were managed for dermatologic disease. Cellularly, we denote striking specificity to the IFN-I response, which was previously assumed to be universal. In peripheral blood, myeloid cells display the most robust IFN-I signatures. In the affected skin, IFN-I signaling is observed in the keratinocytes of the epidermis, endothelia, and the monocytes and macrophages of the dermis. These findings define the specific cells causing circulating and dermatologic inflammation and expand the clinical spectrum of ISG15 deficiency to dermatologic presentations as a third phenotype co-dominant to the infectious and neurologic manifestations.Fil: Martin Fernandez, Marta. Icahn School Of Medicine At Mount Sinai; Estados Unidos. King Saud University; Arabia SauditaFil: Bravo García Morato, María. Instituto de Investigacion del Hospital de la Paz.; EspañaFil: Gruber, Conor. Icahn School Of Medicine At Mount Sinai; Estados Unidos. King Saud University; Arabia SauditaFil: Murias Loza, Sara. Instituto de Investigacion del Hospital de la Paz.; EspañaFil: Malik, Muhammad Nasir Hayat. Twincore; Alemania. University Of Lahore; Países Bajos. Leibniz Universitat Hannover; Alemania. Helmholtz Gemeinschaft; AlemaniaFil: Alsohime, Fahad. King Saud University; Arabia SauditaFil: Alakeel, Abdullah. King Saud University; Arabia SauditaFil: Valdez, Rita. Gobierno de la Ciudad Autónoma de Buenos Aires. Hospital General de Agudos Doctor Cosme Argerich; ArgentinaFil: Buta, Sofija. Icahn School Of Medicine At Mount Sinai; Estados UnidosFil: Buda, Guadalupe. Bitgenia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Biología Celular e Histología; ArgentinaFil: Marti, Marcelo Adrian. Bitgenia; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Biología Celular e Histología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Larralde, Margarita. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos "Ramos Mejía"; ArgentinaFil: Boisson, Bertrand. L'institut Des Maladies Génétiques Imagine; Francia. The Rockefeller University; Estados Unidos. Universite de Paris; FranciaFil: Feito Rodriguez, Marta. Instituto de Investigacion del Hospital de la Paz.; EspañaFil: Qiu, Xueer. Icahn School Of Medicine At Mount Sinai; Estados UnidosFil: Chrabieh, Maya. L'institut Des Maladies Génétiques Imagine; FranciaFil: Al Ayed, Mohammed. Najran University; Arabia SauditaFil: Al Muhsen, Saleh. King Saud University; Arabia SauditaFil: Desai, Jigar V.. National Institutes of Health; Estados UnidosFil: Ferre, Elise M.N.. National Institutes of Health; Estados UnidosFil: Rosenzweig, Sergio D.. National Institutes of Health; Estados UnidosFil: Amador-Borrero, Blanca. Icahn School Of Medicine At Mount Sinai; Estados UnidosFil: Bravo-Gallego, Luz Yadira. Instituto de Investigacion del Hospital de la Paz.; EspañaFil: Olmer, Ruth. Hannover Medical School; Alemania. German Center for Lung Research; AlemaniaFil: Merkert, Sylvia. Hannover Medical School; Alemania. German Center for Lung Research; AlemaniaFil: Bret, Montserrat. Instituto de Investigacion del Hospital de la Paz.; EspañaFil: Sood, Amika K.. University of North Carolina; Estados UnidosFil: Al-rabiaah, Abdulkarim. King Saud University; Arabia SauditaFil: Temsah, Mohamad Hani. King Saud University; Arabia SauditaFil: Halwani, Rabih. University of Sharjah; Emiratos Arabes UnidosFil: Hernandez, Michelle Marilyn. University of North Carolina; Estados UnidosFil: Pessler, Frank. Twincore; Alemania. Helmholtz Centre for Infection Research; AlemaniaFil: Casanova, Jean Laurent. The Rockefeller University; Estados Unidos. Necker Hospital for Sick Children; Francia. Howard Hughes Medical Institute; Estados Unidos. Universite de Paris; FranciaFil: Bustamante, Jacinta. The Rockefeller University; Estados Unidos. Necker Hospital for Sick Children; Francia. Universite de Paris; FranciaFil: Lionakis, Michail S.. National Institutes of Health; Estados UnidosFil: Bogunovic, Dusan. Icahn School Of Medicine At Mount Sinai; Estados Unido

    LHCb upgrade software and computing : technical design report

    Get PDF
    This document reports the Research and Development activities that are carried out in the software and computing domains in view of the upgrade of the LHCb experiment. The implementation of a full software trigger implies major changes in the core software framework, in the event data model, and in the reconstruction algorithms. The increase of the data volumes for both real and simulated datasets requires a corresponding scaling of the distributed computing infrastructure. An implementation plan in both domains is presented, together with a risk assessment analysis

    Physics case for an LHCb Upgrade II - Opportunities in flavour physics, and beyond, in the HL-LHC era

    Get PDF
    The LHCb Upgrade II will fully exploit the flavour-physics opportunities of the HL-LHC, and study additional physics topics that take advantage of the forward acceptance of the LHCb spectrometer. The LHCb Upgrade I will begin operation in 2020. Consolidation will occur, and modest enhancements of the Upgrade I detector will be installed, in Long Shutdown 3 of the LHC (2025) and these are discussed here. The main Upgrade II detector will be installed in long shutdown 4 of the LHC (2030) and will build on the strengths of the current LHCb experiment and the Upgrade I. It will operate at a luminosity up to 2×1034 cm−2s−1, ten times that of the Upgrade I detector. New detector components will improve the intrinsic performance of the experiment in certain key areas. An Expression Of Interest proposing Upgrade II was submitted in February 2017. The physics case for the Upgrade II is presented here in more depth. CP-violating phases will be measured with precisions unattainable at any other envisaged facility. The experiment will probe b → sl+l−and b → dl+l− transitions in both muon and electron decays in modes not accessible at Upgrade I. Minimal flavour violation will be tested with a precision measurement of the ratio of B(B0 → μ+μ−)/B(Bs → μ+μ−). Probing charm CP violation at the 10−5 level may result in its long sought discovery. Major advances in hadron spectroscopy will be possible, which will be powerful probes of low energy QCD. Upgrade II potentially will have the highest sensitivity of all the LHC experiments on the Higgs to charm-quark couplings. Generically, the new physics mass scale probed, for fixed couplings, will almost double compared with the pre-HL-LHC era; this extended reach for flavour physics is similar to that which would be achieved by the HE-LHC proposal for the energy frontier

    The impact of surgical delay on resectability of colorectal cancer: An international prospective cohort study

    Get PDF
    AIM: The SARS-CoV-2 pandemic has provided a unique opportunity to explore the impact of surgical delays on cancer resectability. This study aimed to compare resectability for colorectal cancer patients undergoing delayed versus non-delayed surgery. METHODS: This was an international prospective cohort study of consecutive colorectal cancer patients with a decision for curative surgery (January-April 2020). Surgical delay was defined as an operation taking place more than 4 weeks after treatment decision, in a patient who did not receive neoadjuvant therapy. A subgroup analysis explored the effects of delay in elective patients only. The impact of longer delays was explored in a sensitivity analysis. The primary outcome was complete resection, defined as curative resection with an R0 margin. RESULTS: Overall, 5453 patients from 304 hospitals in 47 countries were included, of whom 6.6% (358/5453) did not receive their planned operation. Of the 4304 operated patients without neoadjuvant therapy, 40.5% (1744/4304) were delayed beyond 4 weeks. Delayed patients were more likely to be older, men, more comorbid, have higher body mass index and have rectal cancer and early stage disease. Delayed patients had higher unadjusted rates of complete resection (93.7% vs. 91.9%, P = 0.032) and lower rates of emergency surgery (4.5% vs. 22.5%, P < 0.001). After adjustment, delay was not associated with a lower rate of complete resection (OR 1.18, 95% CI 0.90-1.55, P = 0.224), which was consistent in elective patients only (OR 0.94, 95% CI 0.69-1.27, P = 0.672). Longer delays were not associated with poorer outcomes. CONCLUSION: One in 15 colorectal cancer patients did not receive their planned operation during the first wave of COVID-19. Surgical delay did not appear to compromise resectability, raising the hypothesis that any reduction in long-term survival attributable to delays is likely to be due to micro-metastatic disease

    Abstracts from the 20th International Symposium on Signal Transduction at the Blood-Brain Barriers

    Full text link
    https://deepblue.lib.umich.edu/bitstream/2027.42/138963/1/12987_2017_Article_71.pd

    Measurement of branching fractions of charmless four-body Λ<sup>0</sup><sub>b</sub> and Ξ<sup>0</sup><sub>b</sub> decays

    Get PDF
    A search for charmless four-body decays of Λ b 0 and Ξ b 0 baryons with a proton and three charged mesons (either kaons or pions) in the final state is performed. The data sample used was recorded in 2011 and 2012 with the LHCb experiment and corresponds to an integrated luminosity of 3 fb−1. Six decay modes are observed, among which Λ b 0  → pK−π+π−, Λ b 0  → pK−K+K−, Ξ b 0  → pK−π+π− and Ξ b 0  → pK−π+K− are established for the first time. Their branching fractions (including the ratio of hadronisation fractions in the case of the Ξ b 0 baryon) are determined relative to the Λ b 0  → Λ c + π− decay

    Incomplete penetrance in primary immunodeficiency: a skeleton in the closet

    Full text link
    corecore