14,808 research outputs found
Closed Loop solar array-ion thruster system with power control circuitry
A power control circuit connected between a solar array and an ion thruster receives voltage and current signals from the solar array. The control circuit multiplies the voltage and current signals together to produce a power signal which is differentiated with respect to time. The differentiator output is detected by a zero crossing detector and, after suitable shaping, the detector output is phase compared with a clock in a phase demodulator. An integrator receives no output from the phase demodulator when the operating point is at the maximum power but is driven toward the maximum power point for non-optimum operation. A ramp generator provides minor variations in the beam current reference signal produced by the integrator in order to obtain the first derivative of power
Self-reconfiguring solar cell system
A self-reconfiguring solar cell array is disclosed wherein some of the cells are switched so that they can be either in series or in shunt within the array. This feature of series or parallel switching of cells allows the array to match the load to achieve maximum power transfer. Automatic control is used to determine the conditions for maximum power operation and to switch the array into the appropriate configuration necessary to transfer maximum power to the load
Simplified power supplies for ion thrusters
The initial development and demonstration of power supplies with an order of magnitude reduction in parts count, leading to increased reliability at lower weight, while still maintaining thrust system performance are discussed. Two new self-regulating keeper power supply circuits were developed and tested. One supply comprises 14 parts and uses an input voltage range of 18 to 36 volts, the other operates from 200 to 400 volts and requires 22 components. A technique for controlling heater power is also demonstrated
An Experimental Information Gathering and Utilization Systems (IGUS) Robot to Demonstrate the Physics of Now
The past, present and future are not fundamental properties of Minkowski
spacetime. It has been suggested that they are properties of a class of
information gathering and utilizing systems (IGUSs).The past, present and
future are psychologically created phenomena not actually properties of
spacetime. A human is a model IGUS robot. We develop a way to establish that
the past, present, and future do not follow from the laws of physics by
constructing robots that process information differently and therefore
experience different nows (presents). We construct a customized virtual reality
(VR) system which allows an observer to switch between present and past. This
robot (human with VR system) can experience immersion in the immediate past ad
libitum. Being able to actually construct an IGUS that has the same present at
two different coordinates along the worldline lends support to the IGUS
hypothesis.Comment: 8 pages, 5 figure
The dc power control for a liquid-fed resistojet
A simple breadboard power controller was designed and demonstrated for a new liquid-fed water resistojet. The 1-piece laboratory model thruster has an integrated vaporizer/superheater using a single heating element. Heater temperature was maintained at or near a preset reference value with the closed loop controller providing pulse width modulated (PWM) dc power into the thruster heater. A combined thruster, temperature readout, PWM transfer function was experimentally determined. This transfer function was used to design a proportional plus integral controller that demonstrated zero steady state error, conservative stability margins and adequate transient response to step changes in propellant flow rate, input voltage and temperature reference. Initial turn-on temperature overshoot from room temperature to a 650 C setpoint was 80 C. In addition, EMI was alleviated by reducing heater dI/dt and dV/dt using a simple diode-inductor-capacitor network. Based on limited initial tests, thruster preheat with no propellant flow was necessary to achieve stable system operation during startup. Breadboard power efficiency was 99 percent at 1 kW, and component mass was 0.4 kg excluding the power loss and mass of an input filter required for spacecraft integration
Resistojet control and power for high frequency ac buses
Resistojets are operational on many geosynchronous communication satellites which all use dc power buses. Multipropellant resistojets were selected for the Initial Operating Capability (IOC) Space Station which will supply 208 V, 20 kHz power. This paper discusses resistojet heater temperature controllers and passive power regulation methods for ac power systems. A simple passive power regulation method suitable for use with regulated sinusoidal or square wave power was designed and tested using the Space Station multipropellant resistojet. The breadboard delivered 20 kHz power to the resistojet heater. Cold start surge current limiting, a power efficiency of 95 percent, and power regulation of better than 2 percent were demonstrated with a two component, 500 W breadboard power controller having a mass of 0.6 kg
Simplified dc to dc converter
A dc to dc converter which can start with a shorted output and which regulates output voltage and current is described. Voltage controlled switches directed current through the primary of a transformer the secondary of which includes virtual reactance. The switching frequency of the switches is appropriately varied to increase the voltage drop across the virtual reactance in the secondary winding to which there is connected a low impedance load. A starting circuit suitable for voltage switching devices is provided
Low power arcjet thruster pulse ignition
An investigation of the pulse ignition characteristics of a 1 kW class arcjet using an inductive energy storage pulse generator with a pulse width modulated power converter identified several thruster and pulse generator parameters that influence breakdown voltage including pulse generator rate of voltage rise. This work was conducted with an arcjet tested on hydrogen-nitrogen gas mixtures to simulate fully decomposed hydrazine. Over all ranges of thruster and pulser parameters investigated, the mean breakdown voltages varied from 1.4 to 2.7 kV. Ignition tests at elevated thruster temperatures under certain conditions revealed occasional breakdowns to thruster voltages higher than the power converter output voltage. These post breakdown discharges sometimes failed to transition to the lower voltage arc discharge mode and the thruster would not ignite. Under the same conditions, a transition to the arc mode would occur for a subsequent pulse and the thruster would ignite. An automated 11 600 cycle starting and transition to steady state test demonstrated ignition on the first pulse and required application of a second pulse only two times to initiate breakdown
- …
