155 research outputs found
Bayesian Asteroseismology of 23 Solar-Like Kepler Targets
We study 23 previously published Kepler targets to perform a consistent
grid-based Bayesian asteroseismic analysis and compare our results to those
obtained via the Asteroseismic Modelling Portal (AMP). We find differences in
the derived stellar parameters of many targets and their uncertainties. While
some of these differences can be attributed to systematic effects between
stellar evolutionary models, we show that the different methodologies deliver
incompatible uncertainties for some parameters. Using non-adiabatic models and
our capability to measure surface effects, we also investigate the dependency
of these surface effects on the stellar parameters. Our results suggest a
dependence of the magnitude of the surface effect on the mixing length
parameter which also, but only minimally, affects the determination of stellar
parameters. While some stars in our sample show no surface effect at all, the
most significant surface effects are found for stars that are close to the
Sun's position in the HR diagram.Comment: 14 pages, 9 figures, accepted for publication in MNRA
Modeling Convective Core Overshoot and Diffusion in Procyon Constrained by Asteroseismic Data
We compare evolved stellar models, which match Procyons mass and position in
the HR diagram, to current ground-based asteroseismic observations. Diffusion
of helium and metals along with two conventional core overshoot descriptions
and the Kuhfuss nonlocal theory of convection are considered. We establish that
one of the two published asteroseismic data reductions for Procyon, which
mainly differ in their identification of even versus odd l-values, is a
significantly more probable and self-consistent match to our models than the
other. The most probable models according to our Bayesian analysis have evolved
to just short of turnoff, still retaining a hydrogen convective core. Our most
probable models include Y and Z diffusion and have conventional core overshoot
between 0.9 and 1.5 pressure scale heights, which increases the outer radius of
the convective core by between 22% to 28%, respectively. We discuss the
significance of this comparatively higher than expected core overshoot amount
in terms of internal mixing during evolution. The parameters of our most
probable models are similar regardless of whether adiabatic or nonadiabatic
model p-mode frequencies are compared to the observations, although, the
Bayesian probabilities are greater when the nonadiabatic model frequencies are
used. All the most probable models (with or without core overshoot, adiabatic
or nonadiabatic model frequencies, diffusion or no diffusion, including priors
for the observed HRD location and mass or not) have masses that are within one
sigma of the observed mass 1.497+/-0.037 Msun
Asteroseismic Stellar Modelling with AIMS
The goal of AIMS (Asteroseismic Inference on a Massive Scale) is to estimate
stellar parameters and credible intervals/error bars in a Bayesian manner from
a set of asteroseismic frequency data and so-called classical constraints. To
achieve reliable parameter estimates and computational efficiency, it searches
through a grid of pre-computed models using an MCMC algorithm -- interpolation
within the grid of models is performed by first tessellating the grid using a
Delaunay triangulation and then doing a linear barycentric interpolation on
matching simplexes. Inputs for the modelling consist of individual frequencies
from peak-bagging, which can be complemented with classical spectroscopic
constraints. AIMS is mostly written in Python with a modular structure to
facilitate contributions from the community. Only a few computationally
intensive parts have been rewritten in Fortran in order to speed up
calculations.Comment: 11 pages, 4 figures. Tutorial presented at the IVth Azores
International Advanced School in Space Sciences on "Asteroseismology and
Exoplanets: Listening to the Stars and Searching for New Worlds"
(arXiv:1709.00645), which took place in Horta, Azores Islands, Portugal in
July 201
On the detection of Lorentzian profiles in a power spectrum: A Bayesian approach using ignorance priors
Aims. Deriving accurate frequencies, amplitudes, and mode lifetimes from
stochastically driven pulsation is challenging, more so, if one demands that
realistic error estimates be given for all model fitting parameters. As has
been shown by other authors, the traditional method of fitting Lorentzian
profiles to the power spectrum of time-resolved photometric or spectroscopic
data via the Maximum Likelihood Estimation (MLE) procedure delivers good
approximations for these quantities. We, however, show that a conservative
Bayesian approach allows one to treat the detection of modes with minimal
assumptions (i.e., about the existence and identity of the modes).
Methods. We derive a conservative Bayesian treatment for the probability of
Lorentzian profiles being present in a power spectrum and describe an efficient
implementation that evaluates the probability density distribution of
parameters by using a Markov-Chain Monte Carlo (MCMC) technique.
Results. Potentially superior to "best-fit" procedure like MLE, which only
provides formal uncertainties, our method samples and approximates the actual
probability distributions for all parameters involved. Moreover, it avoids
shortcomings that make the MLE treatment susceptible to the built-in
assumptions of a model that is fitted to the data. This is especially relevant
when analyzing solar-type pulsation in stars other than the Sun where the
observations are of lower quality and can be over-interpreted. As an example,
we apply our technique to CoRoT observations of the solar-type pulsator HD
49933.Comment: 12 pages, 11 figures, accepted for publication in Astronomy and
Astrophysic
Pulsation models for the roAp star HD 134214
Precise time-series photometry with the MOST satellite has led to
identification of 10 pulsation frequencies in the rapidly oscillating Ap (roAp)
star HD 134214. We have fitted the observed frequencies with theoretical
frequencies of axisymmetric modes in a grid of stellar models with dipole
magnetic fields. We find that, among models with a standard composition of
and with suppressed convection, eigenfrequencies of a
model with and a polar
magnetic field strength of 4.1kG agree best with the observed frequencies. We
identify the observed pulsation frequency with the largest amplitude as a
deformed dipole () mode, and the four next-largest-amplitude
frequencies as deformed modes. These modes have a radial quasi-node
in the outermost atmospheric layers (). Although the model
frequencies agree roughly with observed ones, they are all above the acoustic
cut-off frequency for the model atmosphere and hence are predicted to be
damped. The excitation mechanism for the pulsations of HD 134214 is not clear,
but further investigation of these modes may be a probe of the atmospheric
structure in this magnetic chemically peculiar star.Comment: 9 pages, 6 figures; accepted for publication in MNRA
gamma Doradus pulsation in two pre-main sequence stars discovered by CoRoT
Pulsations in pre-main sequence stars have been discovered several times
within the last years. But nearly all of these pulsators are of delta
Scuti-type. gamma Doradus-type pulsation in young stars has been predicted by
theory, but lack observational evidence. We present the investigation of
variability caused by rotation and (gammaDoradus-type) pulsation in two
pre-main sequence members of the young open cluster NGC2264 using
high-precision time series photometry from the CoRoT satellite and dedicated
high-resolution spectroscopy. Time series photometry of NGC2264VAS20 and NGC
2264VAS87 was obtained by the CoRoT satellite during the dedicated short run
SRa01 in March 2008. NGC2264VAS87 was re-observed by CoRoT during the short run
SRa05 in December 2011 and January 2012. Frequency analysis was conducted using
Period04 and SigSpec. The spectral analysis was performed using equivalent
widths and spectral synthesis. The frequency analysis yielded 10 and 14
intrinsic frequencies for NGC2264VAS20 and NGC2264VAS 87, respectively, in the
range from 0 to 1.5c/d which are attributed to be caused by a combination of
rotation and pulsation. The effective temperatures were derived to be
6380150K for NGC2264VAS20 and 6220150K for NGC2264VAS87. Membership
of the two stars to the cluster is confirmed independently using X-ray fluxes,
radial velocity measurements and proper motions available in the literature.
The derived Li abundances of log n(Li)=3.34 and 3.54 for NGC2264VAS20 and
NGC2264VAS87, respectively, are in agreement with the Li abundance for other
stars in NGC2264 of similar Teff reported in the literature. We conclude that
the two objects are members of NGC2264 and therefore are in their pre-main
sequence evolutionary stage. Assuming that part of their variability is caused
by pulsation, these two stars might be the first pre-main sequence gamma
Doradus candidates.Comment: 11 pages, 10 figures, A&A accepte
Photometry of GSC 762-110, a new triple-mode radially pulsating star
Stars pulsating in three radial modes are very rare; only three examples are
known in the Galaxy. These stars are very useful since their periods may be
measured very precisely, and this will constrain the global stellar parameters
and the models of the star's interior. The purpose of this paper is to present
a new example of the class of triple-mode radial pulsators. A search for
candidate multi-mode pulsators was carried out in public survey data.
Time-series photometry of one of the candidates, GSC 762-110, was performed.
GSC 762-110 was found to be a triple-mode radial pulsator, with a fundamental
period of 0.1945d and period ratios of 0.7641 and 0.8012. In addition two
non-radial modes were found, for which the amplitude has diminished
considerably over the last few years.Comment: Accepted for publication in Astronomy & Astrophysic
Toward a New Kind of Asteroseismic Grid Fitting
Recent developments in instrumentation (e.g., in particular the Kepler and
CoRoT satellites) provide a new opportunity to improve the models of stellar
pulsations. Surface layers, rotation, and magnetic fields imprint erratic
frequency shifts, trends, and other non-random behavior in the frequency
spectra. As our observational uncertainties become smaller, these are
increasingly important and difficult to deal with using standard fitting
techniques. To improve the models, new ways to compare their predictions with
observations need to be conceived. In this paper we present a completely
probabilistic (Bayesian) approach to asteroseismic model fitting. It allows for
varying degrees of prior mode identification, corrections for the discrete
nature of the grid, and most importantly implements a treatment of systematic
errors, such as the "surface effects." It removes the need to apply semi-
empirical corrections to the observations prior to fitting them to the models
and results in a consistent set of probabilities with which the model physics
can be probed and compared. As an example, we show a detailed asteroseismic
analysis of the Sun. We find a most probable solar age, including a 35 +- 5
million year pre-main sequence phase, of 4.591 billion years, and initial
element mass fractions of X_0 = 0.72, Y_0 = 0.264, Z_0 = 0.016, consistent with
recent asteroseismic and non-asteroseismic studies.Comment: 15 pages, 5 figures, accepted for publication in The Astrophysical
Journal; v2 contains minor changes made in the proofs (updated references &
corrected typos
The nature of p-modes and granulation in HD 49933 observed by CoRoT
Context: Recent observations of HD49933 by the space-photometric mission
CoRoT provide photometric evidence of solar type oscillations in a star other
than our Sun. The first published reduction, analysis, and interpretation of
the CoRoT data yielded a spectrum of p-modes with l = 0, 1, and 2. Aims: We
present our own analysis of the CoRoT data in an attempt to compare the
detected pulsation modes with eigenfrequencies of models that are consistent
with the observed luminosity and surface temperature. Methods: We used the
Gruberbauer et al. frequency set derived based on a more conservative Bayesian
analysis with ignorance priors and fit models from a dense grid of model
spectra. We also introduce a Bayesian approach to searching and quantifying the
best model fits to the observed oscillation spectra. Results: We identify 26
frequencies as radial and dipolar modes. Our best fitting model has solar
composition and coincides within the error box with the spectroscopically
determined position of HD49933 in the H-R diagram. We also show that
lower-than-solar Z models have a lower probability of matching the observations
than the solar metallicity models. To quantify the effect of the deficiencies
in modeling the stellar surface layers in our analysis, we compare adiabatic
and nonadiabatic model fits and find that the latter reproduces the observed
frequencies better.Comment: accepted to be published in A&A, 9 pages, 5 figure
- …
