452 research outputs found
Cuerpos políticos. Niveles y tipos de participación en Carne de Cañón del Colectivo de Arte La Vitrina
Psico-análisis y análisis escénico. Freud, la psicología y la Vanguardia artística alrededor del 1900 / Psycho-analysis and performance analysis. Freud, the psychology and artistic Avangarde around 1900
Las estrategias de atención, así como de los mecanismos de hacer memoria que debe tener en consideración el médico en contextos terapéuticos con pacientes fue una de las preocupaciones del psicoanálisis freudiano. Por su parte, la emergencia de la psicología a fines del siglo XIX tuvo en la atención de la experiencia un eje meodológico fundamental con el cual articularse como ciencia. El artículo revisa los principales plantiamientos en torno a la noción de “atención flotante” y la “pizarra mágica” elaborados por Freud apuntando tanto al contexto artístico alrededor del 1900 en el cual emergieron y fueron puestas en práctica éstas ideas como a los posibles vínculos, usos y las diferencias que ambas nociones tienen con el ejercicio que, al interior de la teatrología, se despliega al analizar las artes escénicas/performativas del teatro, la música y la danza.Atention strategies and mechanisms to make memory that should take into consideration the medical patients in therapeutic contexts was one of the concerns of Freudian psychoanalysis. Meanwhile, the emergence of psychology in the late nineteenth century was in the care of a fundamental experience which meodológico axis articulated as science. The article reviews the main plantiamientos around the notion of "floating attention" and "magic slate" developed by Freud pointing to both the artistic context around 1900 in which they emerged and were put into practice these ideas as possible links, uses and differences that both notions have to exercise, within the teatrología, is deployed to analyze the scenic / performative arts theater, music and dance
Design and fabrication of a centrifugally driven microfluidic disk for fully integrated metabolic assays on whole blood
For the first time, we present a novel and fully integrated centrifugal microfluidic “ lab-on-a-disk” for rapid metabolic assays in human whole blood. All essential steps comprising blood sampling, metering, plasma extraction and the final optical detection are conducted within t = 150 s in passive structures integrated on one disposable disk. Our technology features a novel plasma extraction structure (V = 500 nL, CV < 5%) without using any hydrophobic microfluidics where the purified plasma (cRBC< 0.11%) is centrifugally separated and subsequently extracted through a capillarily primed extraction channel into the detection chamber. While this capillary extraction requires precisely defined, narrow micro-structures, the reactive mixing and detection is most efficient within larger cavities. The corresponding manufacturing technique of these macro- and micro structures in the range of 30 µ m to 1000 µ m is also presented for the first time: A novel, cost-efficient hybrid prototyping technique of a multiscale epoxy master for subsequent hot embossing of polymer disks
Optical beam guidance in monolithic polymer chips for miniaturized colorimetric assays
For the first time, we present a simple and robust optical concept to enable precise and sensitive read-out of colorimetric assays in flat lab-on-a-chip devices. The optical guidance of the probe beam through an incorporated measurement chamber to the detector is based on the total internal reflection at V-grooves in the polymer chip. This way, the optical path length through the flat measurement chamber and thus the performance of the measurements are massively enhanced compared to direct (perpendicular) beam incidence. This is demonstrated by a chip-based, colorimetric glucose-assay on serum. Outstanding features are an excellent reproducibility (CV= 1.91 %), a competitive lower limit of detection (cmin = 124 μM), and a high degree of linearity (R2 = 0.998) within a working range extending over nearly three orders of magnitude
Parallelization of chip-based fluorescence immuno-assays with quantum-dot labelled beads
This paper presents an optical concept for the read-out of a parallel, bead-based fluorescence immunoassay conducted on a lab-on-a-disk platform. The reusable part of the modular setup comprises a detection unit featuring a single LED as light source, two emission-filters, and a color CCD-camera as standard components together with a spinning drive as actuation unit. The miniaturized lab-on-a-disk is devised as a disposable. In the read-out process of the parallel assay, beads are first identified by the color of incorporated quantum dots (QDs). Next, the reaction-specific fluorescence signal is quantified with FluoSpheres-labeled detection anti-bodies. To enable a fast and automated read-out, suitable algorithms have been implemented in this work. Based on this concept, we successfully demonstrated a Hepatitis-A assay on our disk-based lab-on-a-chip
Direct hemoglobin measurement by monolithically integrated optical beam guidance
We present a concept for optical beam guidance by total internal reflection (TIR) at V-grooves as retro reflectors which are monolithically integrated on a microfluidic "lab-on-a-disk". This way, the optical path length through a measurement chamber and thus the sensitivity of colorimetric assays is massively enhanced compared to direct (perpendicular) beam incidence. With this rugged optical concept, we determine the concentration of hemoglobin (Hb) in human whole blood. Outstanding features are a high degree of linearity (R2 = 0.993) between the optical signal and the Hb together with a reproducibility of CV= 2.9 %, and a time-to-result of 100 seconds, only
Systematics of Fission Barriers in Superheavy Elements
We investigate the systematics of fission barriers in superheavy elements in
the range Z = 108-120 and N = 166-182. Results from two self-consistent models
for nuclear structure, the relativistic mean-field (RMF) model as well as the
non-relativistic Skyrme-Hartree-Fock approach are compared and discussed. We
restrict ourselves to axially symmetric shapes, which provides an upper bound
on static fission barriers. We benchmark the predictive power of the models
examining the barriers and fission isomers of selected heavy actinide nuclei
for which data are available. For both actinides and superheavy nuclei, the RMF
model systematically predicts lower barriers than most Skyrme interactions. In
particular the fission isomers are predicted too low by the RMF, which casts
some doubt on recent predictions about superdeformed ground states of some
superheavy nuclei. For the superheavy nuclei under investigation, fission
barriers drop to small values around Z = 110, N = 180 and increase again for
heavier systems. For most of the forces, there is no fission isomer for
superheavy nuclei, as superdeformed states are in most cases found to be
unstable with respect to octupole distortions.Comment: 17 pages REVTEX, 12 embedded eps figures. corrected abstrac
Anti-staphylococcal humoral immune response in persistent nasal carriers and noncarriers of Staphylococcus aureus
BACKGROUND. Persistent carriers have a higher risk of Staphylococcus aureus infections than noncarriers but a lower risk of bacteremia-related death. Here, the role played by anti-staphylococcal antibodies was studied. METHODS. Serum samples from 15 persistent carriers and 19 noncarriers were analyzed for immunoglobulin (Ig) G, IgA, and IgM binding to 19 S. aureus antigens, by means of Luminex technology. Nasal secretions and serum samples obtained after 6 months were also analyzed. RESULTS. Median serum IgG levels were significantly higher in persistent carriers than in noncarriers for toxic shock syndrome toxin (TSST)-1 (median fluorescence intensity [MFI] value, 11,554 vs. 4291; P < .001) and staphylococcal enterotoxin (SE) A (742 vs. 218; P < .05); median IgA levels were higher for TSST-1 (P < .01), SEA, and clumping factor (Clf) A and B (P < .05). The in vitro neutralizing capacity of anti-TSST-1 antibodies was correlated with the MFI value (R(2) = 0.93) and was higher in persistent carriers (90.6% vs. 70.6%; P < .05). Antibody levels were stable over time and correlated with levels in nasal secretions (for IgG, R(2) = 0.87; for IgA, R(2) = 0.77). CONCLUSIONS. Antibodies to TSST-1 ha
New Outlook on the Possible Existence of Superheavy Elements in Nature
A consistent interpretation is given to some previously unexplained phenomena
seen in nature in terms of the recently discovered long-lived high spin super-
and hyper-deformed isomeric states. The Po halos seen in mica are interpreted
as due to the existence of such isomeric states in corresponding Po or nearby
nuclei which eventually decay by gamma- or beta-decay to the ground states of
210Po, 214Po and 218Po nuclei. The low-energy 4.5 MeV alpha-particle group
observed in several minerals is interpreted as due to a very enhanced alpha
transition from the third minimum of the potential-energy surface in a
superheavy nucleus with atomic number Z=108 (Hs) and atomic mass number around
271 to the corresponding minimum in the daughter.Comment: 8 pages, 8 figures, 5 tables. Paper presented at VII Int.
School-Seminar on Heavy Ion Physics, May 27 - June 1, 2002, Dubna, Russi
Event-triggered logical flow control for comprehensive process integration of multi-step assays on centrifugal microfluidic platforms
Content in the UH Research Archive is made available for personal research, educational, and non-commercial purposes only. Unless otherwise stated, all content is protected by copyright, and in the absence of an open license, permissions for further re-use should be sought from the publisher, the author, or other copyright holder.The centrifugal "lab-on-a-disc" concept has proven to have great potential for process integration of bioanalytical assays, in particular where ease-of-use, ruggedness, portability, fast turn-around time and cost efficiency are of paramount importance. Yet, as all liquids residing on the disc are exposed to the same centrifugal field, an inherent challenge of these systems remains the automation of multi-step, multi-liquid sample processing and subsequent detection. In order to orchestrate the underlying bioanalytical protocols, an ample palette of rotationally and externally actuated valving schemes has been developed. While excelling with the level of flow control, externally actuated valves require interaction with peripheral instrumentation, thus compromising the conceptual simplicity of the centrifugal platform. In turn, for rotationally controlled schemes, such as common capillary burst valves, typical manufacturing tolerances tend to limit the number of consecutive laboratory unit operations (LUOs) that can be automated on a single disc. In this paper, a major advancement on recently established dissolvable film (DF) valving is presented; for the very first time, a liquid handling sequence can be controlled in response to completion of preceding liquid transfer event, i.e. completely independent of external stimulus or changes in speed of disc rotation. The basic, event-triggered valve configuration is further adapted to leverage conditional, large-scale process integration. First, we demonstrate a fluidic network on a disc encompassing 10 discrete valving steps including logical relationships such as an AND-conditional as well as serial and parallel flow control. Then we present a disc which is capable of implementing common laboratory unit operations such as metering and selective routing of flows. Finally, as a pilot study, these functions are integrated on a single disc to automate a common, multi-step lab protocol for the extraction of total RNA from mammalian cell homogenate.Peer reviewe
- …
