763 research outputs found
Master Equations for Electron Transport: The Limits of the Markovian Limit
Master equations are increasingly popular for the simulation of
time-dependent electronic transport in nanoscale devices. Several recent
Markovian approaches use "extended reservoirs" - explicit degrees of freedom
associated with the electrodes - distinguishing them from many previous classes
of master equations. Starting from a Lindblad equation, we develop a common
foundation for these approaches. Due to the incorporation of explicit electrode
states, these methods do not require a large bias or even "true Markovianity"
of the reservoirs. Nonetheless, their predictions are only physically relevant
when the Markovian relaxation is weaker than the thermal broadening and when
the extended reservoirs are "sufficiently large," in a sense that we quantify.
These considerations hold despite complete positivity and respect for Pauli
exclusion at any relaxation strength.Comment: Accepted version. To appear in The Journal of Chemical Physic
Large Charge Four-Dimensional Extremal N=2 Black Holes with R^2-Terms
We consider N=2 supergravity in four dimensions with small R^2 curvature
corrections. We construct large charge extremal supersymmetric and
non-supersymmetric black hole solutions in all space, and analyze their
thermodynamic properties.Comment: 18 pages. v2,3: minor fixe
Large Charge Four-Dimensional Non-Extremal N=2 Black Holes with R^2-Terms
We consider N=2 supergravity in four dimensions with small R^2 curvature
corrections. We construct large charge non-extremal black hole solutions in all
space, with either a supersymmetric or a non-supersymmetric extremal limit, and
analyze their thermodynamic properties. This generalizes some of the extremal
solutions presented in [arXiv:0902.0831]. The indexed entropy of the
non-extremal extension of the supersymmetric black hole, has the form of the
extremal entropy, with the charges replaced by a function of the charges, the
moduli at infinity and the non-extremality parameter. This is the same behavior
as in the case without R^2-terms.Comment: 13 pages. v2: stripped down to letter format, based on the background
given in [arXiv:0902.0831]. v3: up to date with CQG versio
Backward Evolving Quantum States
The basic concept of the two-state vector formalism, which is the time
symmetric approach to quantum mechanics, is the backward evolving quantum
state. However, due to the time asymmetry of the memory's arrow of time, the
possible ways to manipulate a backward evolving quantum state differ from those
for a standard, forward evolving quantum state. The similarities and the
differences between forward and backward evolving quantum states regarding the
no-cloning theorem, nonlocal measurements, and teleportation are discussed. The
results are relevant not only in the framework of the two-state vector
formalism, but also in the framework of retrodictive quantum theory.Comment: Contribution to the J.Phys. A special issue in honor of GianCarlo
Ghirard
Industrial experiences with resource management under software randomization in ARINC653 avionics environments
Injecting randomization in different layers of the computing platform has been shown beneficial for security, resilience to software bugs and timing analysis. In this paper, with focus on the latter, we show our experience regarding memory and timing resource management when software randomization techniques are applied to one of the most stringent industrial environments, ARINC653-based avionics. We describe the challenges in this task, we propose a set of solutions and present the results obtained for two commercial avionics applications, executed on COTS hardware and RTOS.The work leading to these results has been funded by the European Community’s Seventh Framework Programme (FP7/2007-2013) un-
der the PROXIMA Project (grant agreement 611085). Moreover, it has been partially supported by the Spanish Ministry of Science and Innovation under grant TIN2015-65316-P and the HiPEAC Network of Excellence.Peer ReviewedPostprint (published version
LightBox: Full-stack Protected Stateful Middlebox at Lightning Speed
Running off-site software middleboxes at third-party service providers has
been a popular practice. However, routing large volumes of raw traffic, which
may carry sensitive information, to a remote site for processing raises severe
security concerns. Prior solutions often abstract away important factors
pertinent to real-world deployment. In particular, they overlook the
significance of metadata protection and stateful processing. Unprotected
traffic metadata like low-level headers, size and count, can be exploited to
learn supposedly encrypted application contents. Meanwhile, tracking the states
of 100,000s of flows concurrently is often indispensable in production-level
middleboxes deployed at real networks.
We present LightBox, the first system that can drive off-site middleboxes at
near-native speed with stateful processing and the most comprehensive
protection to date. Built upon commodity trusted hardware, Intel SGX, LightBox
is the product of our systematic investigation of how to overcome the inherent
limitations of secure enclaves using domain knowledge and customization. First,
we introduce an elegant virtual network interface that allows convenient access
to fully protected packets at line rate without leaving the enclave, as if from
the trusted source network. Second, we provide complete flow state management
for efficient stateful processing, by tailoring a set of data structures and
algorithms optimized for the highly constrained enclave space. Extensive
evaluations demonstrate that LightBox, with all security benefits, can achieve
10Gbps packet I/O, and that with case studies on three stateful middleboxes, it
can operate at near-native speed.Comment: Accepted at ACM CCS 201
Interaction of distinct nuclear proteins with sequences controlling the expression of polyomavirus early genes.
The interaction between cellular factors and polyoma virus (Py) DNA was investigated by using a gel retention assay. Nuclear extracts from various cell lines (NIH 3T3, NIH 3T6, LTK-, F9) contained proteins that formed specific and distinct complexes with Py B enhancer fragments of either wild-type or F9-1 mutant origin. The presence of an excess amount of other well-characterized DNA sequences, including the Py A enhancer, the murine sarcoma virus enhancer, and the simian virus 40 enhancer-promoter region, did not interfere with this protein-DNA interaction. However, a fragment previously defined as containing the lymphotropic papovavirus enhancer shares the binding of some common factor. This observation, in combination with the results of retention gel assays at different Mg2+ concentrations, indicates the interaction of several nuclear factors and Py DNA. The assay systems that were used allowed a distinction between some factors on the basis of their different biochemical and sequence requirements. The contact sites of these complexes were mapped to the B enhancer region of Py with Bal 31-derived mutant restriction fragments and ExoIII nuclease and are compatible with the functional domains determined in vivo.</jats:p
Black Holes in Ho\v{r}ava Gravity with Higher Derivative Magnetic Terms
We consider Horava gravity coupled to Maxwell and higher derivative magnetic
terms. We construct static spherically symmetric black hole solutions in the
low-energy approximation. We calculate the horizon locations and temperatures
in the near-extremal limit, for asymptotically flat and (anti-)de Sitter
spaces. We also construct a detailed balanced version of the theory, for which
we find projectable and non-projectable, non-perturbative solutions.Comment: 17 pages. v2: Up to date with published version; some minor remarks
and more reference
Pre- and post-selection, weak values, and contextuality
By analyzing the concept of contextuality (Bell-Kochen-Specker) in terms of
pre-and-post-selection (PPS), it is possible to assign definite values to
observables in a new and surprising way. Physical reasons are presented for
restrictions on these assignments. When measurements are performed which do not
disturb the pre- and post-selection (i.e. weak measurements), then novel
experimental aspects of contextuality can be demonstrated including a proof
that every PPS-paradox with definite predictions implies contextuality. Certain
results of these measurements (eccentric weak values with e.g. negative values
outside the spectrum), however, cannot be explained by a "classical-like"
hidden variable theory.Comment: Identical content; stream-lined verbal presentatio
- …
