490 research outputs found

    Predicting diurnal variability of fine inorganic aerosols and their gas-phase precursors near downtown Mexico City

    No full text
    International audiencePartitioning of semi-volatile nitrate and ammonium between the gas and particulate phases is studied combining two thermodynamic models that explicitly include crustal elements and simulate both branches (deliquescence, efflorescence) of aerosol behavior and measurements taken near downtown Mexico City during a field campaign conducted in February?March, 2005. Overall, no significant differences between model predictions (within 30% of error) are observed for particulate ammonium (PM2.5, PM1). In cases of moderate to high RH (40?70%), mostly occurring during the 1st and 2nd daily sampling periods (06:00?10:00 h, 10:00?14:00 h, LST), 4 h PM2.5 nitrate measurements are predicted within 30%. When RH drops below 30%, characteristic of the afternoon sampling periods (14:00-18:00 h), the efflorescence branch is most consistent with observed PM nitrate. Residual error analysis of these low RH cases suggest that aerosol nitrate loading or sulfate-to-nitrate molar ratio control phase behavior, hence the partitioning of semi-volatile PM2.5 nitrate in gas and particulate phases. Finally, inclusion of crustal elements in the modeling framework reduces the error in predicted PM2.5 ammonium by 25%. These findings, if generally applicable, can help improve air quality modeling in nitrate deficient environments

    The role of serotonin in the modulation of cooperative behavior

    Get PDF
    We examined the modulatory role of serotonin in cooperation between unrelated individuals. The identification of the neurohormonal candidates that may modulate levels of cooperation in marine cleaning mutualisms has been a major aim in recent years. Our results provide evidence that serotonin is a driver of cooperative behavioral activities and contribute to the understanding of neural pathways of cooperation, which aim to unravel the basic drive of animal tendencies to cooperate with other

    Cortisol mediates cleaner wrasse switch from cooperation to cheating and tactical deception

    Get PDF
    Recent empirical research, mostly done on humans, recognizes that individuals' physiological state affects levels of cooperation. An individual's internal state may affect the payoffs of behavioural alternatives, which in turn could influence the decision to either cooperate or to defect. However, little is known about the physiology underlying condition dependent cooperation. Here, we demonstrate that shifts in cortisol levels affect levels of cooperation in wild cleaner wrasse Labroides dimidiatus. These cleaners cooperate by removing ectoparasites from visiting 'client' reef fishes but prefer to eat client mucus, which constitutes cheating. We exogenously administrated one of three different compounds to adults, that is, (a) cortisol, (b) glucocorticoid receptor antagonist mifepristone RU486 or (c) sham (saline), and observed their cleaning behaviour during the following 45. min. The effects of cortisol match an earlier observational study that first described the existence of "cheating" cleaners: such cleaners provide small clients with more tactile stimulation with their pectoral and pelvic fins, a behaviour that attracts larger clients that are then bitten to obtain mucus. Blocking glucocorticoid receptors led to more tactile stimulation to large clients. As energy demands and associated cortisol concentration level shifts affect cleaner wrasse behavioural patterns, cortisol potentially offers a general mechanism for condition dependent cooperation in vertebrates

    Disordered Environments in Spatial Games

    Full text link
    The Prisoner's dilemma is the main game theoretical framework in which the onset and maintainance of cooperation in biological populations is studied. In the spatial version of the model, we study the robustness of cooperation in heterogeneous ecosystems in spatial evolutionary games by considering site diluted lattices. The main result is that due to disorder, the fraction of cooperators in the population is enhanced. Moreover, the system presents a dynamical transition at ρ\rho^*, separating a region with spatial chaos from one with localized, stable groups of cooperators.Comment: 6 pages, 5 figure

    Ligand-Receptor Interactions

    Full text link
    The formation and dissociation of specific noncovalent interactions between a variety of macromolecules play a crucial role in the function of biological systems. During the last few years, three main lines of research led to a dramatic improvement of our understanding of these important phenomena. First, combination of genetic engineering and X ray cristallography made available a simultaneous knowledg of the precise structure and affinity of series or related ligand-receptor systems differing by a few well-defined atoms. Second, improvement of computer power and simulation techniques allowed extended exploration of the interaction of realistic macromolecules. Third, simultaneous development of a variety of techniques based on atomic force microscopy, hydrodynamic flow, biomembrane probes, optical tweezers, magnetic fields or flexible transducers yielded direct experimental information of the behavior of single ligand receptor bonds. At the same time, investigation of well defined cellular models raised the interest of biologists to the kinetic and mechanical properties of cell membrane receptors. The aim of this review is to give a description of these advances that benefitted from a largely multidisciplinar approach

    Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment

    No full text
    International audienceData from a recent field campaign in Mexico City are used to evaluate the performance of the EPA Federal Reference Method for monitoring the ambient concentrations of NO2. Measurements of NO2 from standard chemiluminescence monitors equipped with molybdenum oxide converters are compared with those from Tunable Infrared Laser Differential Absorption Spectroscopy (TILDAS) and Differential Optical Absorption Spectroscopy (DOAS) instruments. A significant interference in the chemiluminescence measurement is shown to account for up to 50% of ambient NO2 concentration during afternoon hours. As expected, this interference correlates well with non-NOx reactive nitrogen species (NOz) as well as with ambient O3 concentrations, indicating a photochemical source for the interfering species. A combination of ambient gas phase nitric acid and alkyl and multifunctional alkyl nitrates is deduced to be the primary cause of the interference. Observations at four locations at varying proximities to emission sources indicate that the percentage contribution of HNO3 to the interference decreases with time as the air parcel ages. Alkyl and multifunctional alkyl nitrate concentrations are calculated to reach concentrations as high as several ppb inside the city, on par with the highest values previously observed in other urban locations. Averaged over the MCMA-2003 field campaign, the chemiluminescence monitor interference resulted in an average measured NO2 concentration up to 22% greater than that from co-located spectroscopic measurements. Thus, this interference has the potential to initiate regulatory action in areas that are close to non-attainment and may mislead atmospheric photochemical models used to assess control strategies for photochemical oxidants

    Biological activity differences between TGF-β1 and TGF-β3 correlate with differences in the rigidity and arrangement of their component monomers

    Get PDF
    [Image: see text] TGF-β1, -β2, and -β3 are small, secreted signaling proteins. They share 71–80% sequence identity and signal through the same receptors, yet the isoform-specific null mice have distinctive phenotypes and are inviable. The replacement of the coding sequence of TGF-β1 with TGF-β3 and TGF-β3 with TGF-β1 led to only partial rescue of the mutant phenotypes, suggesting that intrinsic differences between them contribute to the requirement of each in vivo. Here, we investigated whether the previously reported differences in the flexibility of the interfacial helix and arrangement of monomers was responsible for the differences in activity by generating two chimeric proteins in which residues 54–75 in the homodimer interface were swapped. Structural analysis of these using NMR and functional analysis using a dermal fibroblast migration assay showed that swapping the interfacial region swapped both the conformational preferences and activity. Conformational and activity differences were also observed between TGF-β3 and a variant with four helix-stabilizing residues from TGF-β1, suggesting that the observed changes were due to increased helical stability and the altered conformation, as proposed. Surface plasmon resonance analysis showed that TGF-β1, TGF-β3, and variants bound the type II signaling receptor, TβRII, nearly identically, but had small differences in the dissociation rate constant for recruitment of the type I signaling receptor, TβRI. However, the latter did not correlate with conformational preference or activity. Hence, the difference in activity arises from differences in their conformations, not their manner of receptor binding, suggesting that a matrix protein that differentially binds them might determine their distinct activities

    Distribution, magnitudes, reactivities, ratios and diurnal patterns of volatile organic compounds in the Valley of Mexico during the MCMA 2002 and 2003 field campaigns

    No full text
    International audienceA wide array of volatile organic compound (VOC) measurements was conducted in the Valley of Mexico during the MCMA-2002 and 2003 field campaigns. Study sites included locations in the urban core, in a heavily industrial area and at boundary sites in rural landscapes. In addition, a novel mobile-laboratory-based conditional sampling method was used to collect samples dominated by fresh on-road vehicle exhaust to identify those VOCs whose ambient concentrations were primarily due to vehicle emissions. Five distinct analytical techniques were used: whole air canister samples with Gas Chromatography/Flame Ionization Detection (GC-FID), on-line chemical ionization using a Proton Transfer Reaction Mass Spectrometer (PTR-MS), continuous real-time detection of olefins using a Fast Olefin Sensor (FOS), and long path measurements using UV Differential Optical Absorption Spectrometers (DOAS). The simultaneous use of these techniques provided a wide range of individual VOC measurements with different spatial and temporal scales. The VOC data were analyzed to understand concentration and spatial distributions, diurnal patterns, origin and reactivity in the atmosphere of Mexico City. The VOC burden (in ppbC) was dominated by alkanes (60%), followed by aromatics (15%) and olefins (5%). The remaining 20% was a mix of alkynes, halogenated hydrocarbons, oxygenated species (esters, ethers, etc.) and other unidentified VOCs. However, in terms of ozone production, olefins were the most relevant hydrocarbons. Elevated levels of toxic hydrocarbons, such as 1,3-butadiene, benzene, toluene and xylenes were also observed. Results from these various analytical techniques showed that vehicle exhaust is the main source of VOCs in Mexico City and that diurnal patterns depend on vehicular traffic. Finally, examination of the VOC data in terms of lumped modeling VOC classes and its comparison to the VOC lumped emissions reported in other photochemical air quality modeling studies suggests that some, but not all, VOC classes are underestimated in the emissions inventory by factors of 1.1 to 3
    corecore