6,082 research outputs found
Recommended from our members
Graphene-polyelectrolyte multilayer membranes with tunable structure and internal charge
One great advantage of graphene-polyelectrolyte multilayer (GPM) membranes is their tunable structure and internal charge for improved separation performance. In this study, we synthesized GO-dominant GPM membrane with internal negatively-charged domains, polyethyleneimine (PEI)-dominant GPM membrane with internal positively-charged domains and charge-balanced dense/loose GPM membranes by simply adjusting the ionic strength and pH of the GO and PEI solutions used in layer-by-layer membrane synthesis. A combined system of quartz crystal microbalance with dissipation (QCM-D) and ellipsometry was used to analyze the mass deposition, film thickness, and layer density of the GPM membranes. The performance of the GPM membranes were compared in terms of both permeability and selectivity to determine the optimal membrane structure and synthesis strategy. One effective strategy to improve the GPM membrane permeability-selectivity tradeoff is to assemble charge-balanced dense membranes under weak electrostatic interactions. This balanced membrane exhibits the highest MgCl2 selectivity (∼86%). Another effective strategy for improved cation removal is to create PEI-dominant membranes that provide internal positively-charged barrier to enhance cation selectivity without sacrificing water permeability. These findings shine lights on the development of a systematic approach to push the boundary of permeability-selectivity tradeoff for GPM membranes
Sub-nanosecond signal propagation in anisotropy engineered nanomagnetic logic chains
Energy efficient nanomagnetic logic (NML) computing architectures propagate
and process binary information by relying on dipolar field coupling to reorient
closely-spaced nanoscale magnets. Signal propagation in nanomagnet chains of
various sizes, shapes, and magnetic orientations has been previously
characterized by static magnetic imaging experiments with low-speed adiabatic
operation; however the mechanisms which determine the final state and their
reproducibility over millions of cycles in high-speed operation (sub-ns time
scale) have yet to be experimentally investigated. Monitoring NML operation at
its ultimate intrinsic speed reveals features undetectable by conventional
static imaging including individual nanomagnetic switching events and
systematic error nucleation during signal propagation. Here, we present a new
study of NML operation in a high speed regime at fast repetition rates. We
perform direct imaging of digital signal propagation in permalloy nanomagnet
chains with varying degrees of shape-engineered biaxial anisotropy using
full-field magnetic soft x-ray transmission microscopy after applying single
nanosecond magnetic field pulses. Further, we use time-resolved magnetic
photo-emission electron microscopy to evaluate the sub-nanosecond dipolar
coupling signal propagation dynamics in optimized chains with 100 ps time
resolution as they are cycled with nanosecond field pulses at a rate of 3 MHz.
An intrinsic switching time of 100 ps per magnet is observed. These
experiments, and accompanying macro-spin and micromagnetic simulations, reveal
the underlying physics of NML architectures repetitively operated on nanosecond
timescales and identify relevant engineering parameters to optimize performance
and reliability.Comment: Main article (22 pages, 4 figures), Supplementary info (11 pages, 5
sections
Establishing an experimental rat model of photodynamically-induced retinal vein occlusion using erythrosin B
<b>AIM:</b>To develop a reliable, reproducible rat model of retinal vein occlusion (RVO) with a novel photosensitizer (erythrosin B) and study the cellular responses in the retina.<b>METHODS</b>:Central and branch RVOs were created in adult male rats <i>via</i> photochemically-induced ischemia. Retinal changes were monitored<i> via</i> color fundus photography and fluorescein angiography at 1 and 3h, and 1, 4, 7, 14, and 21d after irradiation. Tissue slices were evaluated histopathologically. Retinal ganglion cell survival at different times after RVO induction was quantified by nuclear density count. Retinal thickness was also observed.<b>RESULTS</b>:For all rats in both the central and branch RVO groups, blood flow ceased immediately after laser irradiation and retinal edema was evident at one hour. The retinal detachment rate was 100% at 3h and developed into bullous retinal detachment within 24h. Retinal hemorrhages were not observed until 24h. Clearance of the occluded veins at 7d was observed by fluorescein angiography. Disease manifestation in the central RVO eyes was more severe than in the branch RVO group. A remarkable reduction in the ganglion cell count and retinal thickness was observed in the central RVO group by 21d, whereas moderate changes occurred in the branch RVO group.<b>CONCLUSION:</b> Rat RVO created by photochemically-induced ischemia using erythrosin B is a reproducible and reliable animal model for mimicking the key features of human RVO. However, considering the 100% rate of retinal detachment, this animal model is more suitable for studying RVO with chronic retinal detachment
How New Chinese Immersion School Teachers Can Improve Their Teaching Skills And Have A Mindset Of Supporting And Inspiring Students?
The research question in this article is to find out how new Chinese immersion school teachers can improve their teaching skills and have a mindset of supporting and inspiring students. The project consists of a literature review and a website. Based on large amount of literature review and intensive research, conclusion have been drawn to answer the research question, The research conclusions are presented in a well-designed website aiming to help new teachers who are in transition to teach in Chinese immersion school in U.S. The findings are combined into four representative aspects: social ideologies, patterns of teacher-student interaction, classroom roles, teaching and learning. In the expansive discussion through these four aspects, the research question is addressed with the support of practical classroom cases, in- depth analysis and recommendation. This research not only answers the research question from an academic perspective but also aims to help new Chinese immersion school teachers to solve their struggles and problems in transition
Simple Metals at High Pressure
In this lecture we review high-pressure phase transition sequences exhibited
by simple elements, looking at the examples of the main group I, II, IV, V, and
VI elements. General trends are established by analyzing the changes in
coordination number on compression. Experimentally found phase transitions and
crystal structures are discussed with a brief description of the present
theoretical picture.Comment: 22 pages, 4 figures, lecture notes for the lecture given at the Erice
course on High-Pressure Crystallography in June 2009, Sicily, Ital
Preoperative Factors as Predictors of Outcome of Midurethral Sling in Women with Mixed Urinary Incontinence
Obsessive–Compulsive Disorder and Memory-Mixing in Temporal Comparison: Is Implicit Learning the Missing Link?
The therapeutic potential of the filarial nematode-derived immunodulator, ES-62 in inflammatory disease
The dramatic recent rise in the incidence of allergic or autoimmune inflammatory diseases in the West has been proposed to reflect the lack of appropriate priming of the immune response by infectious agents such as parasitic worms during childhood. Consistent with this, there is increasing evidence supporting an inverse relationship between worm infection and T helper type 1/17 (Th1/17)-based inflammatory disorders such as rheumatoid arthritis, inflammatory bowel disease, type 1 diabetes and multiple sclerosis. Perhaps more surprisingly, given that such worms often induce strong Th2-type immune responses, there also appears to be an inverse correlation between parasite load and atopy. These findings therefore suggest that the co-evolution of helminths with hosts, which has resulted in the ability of worms to modulate inflammatory responses to promote parasite survival, has also produced the benefit of protecting the host from pathological lesions arising from aggressive proinflammatory responses to infection or, indeed, aberrant inflammatory responses underlying autoimmune and allergic disorders. By focusing upon the properties of the filarial nematode-derived immunomodulatory molecule, ES-62, in this review we shall discuss the potential of exploiting the immunomodulatory products of parasitic worms to identify and develop novel therapeutics for inflammation
- …
