158 research outputs found
Flying over the reality gap: From simulated to real indoor airships
Because of their ability to naturally float in the air, indoor airships (often called blimps) constitute an appealing platform for research in aerial robotics. However, when confronted to long lasting experiments such as those involving learning or evolutionary techniques, blimps present the disadvantage that they cannot be linked to external power sources and tend to have little mechanical resistance due to their low weight budget. One solution to this problem is to use a realistic flight simulator, which can also significantly reduce experimental duration by running faster than real time. This requires an efficient physical dynamic modelling and parameter identification procedure, which are complicated to develop and usually rely on costly facilities such as wind tunnels. In this paper, we present a simple and efficient physics-based dynamic modelling of indoor airships including a pragmatic methodology for parameter identification without the need for complex or costly test facilities. Our approach is tested with an existing blimp in a vision-based navigation task. Neuronal controllers are evolved in simulation to map visual input into motor commands in order to steer the flying robot forward as fast as possible while avoiding collisions. After evolution, the best individuals are successfully transferred to the physical blimp, which experimentally demonstrates the efficiency of the proposed approac
Gridbot: An autonomous robot controlled by a Spiking Neural Network mimicking the brain's navigational system
It is true that the "best" neural network is not necessarily the one with the
most "brain-like" behavior. Understanding biological intelligence, however, is
a fundamental goal for several distinct disciplines. Translating our
understanding of intelligence to machines is a fundamental problem in robotics.
Propelled by new advancements in Neuroscience, we developed a spiking neural
network (SNN) that draws from mounting experimental evidence that a number of
individual neurons is associated with spatial navigation. By following the
brain's structure, our model assumes no initial all-to-all connectivity, which
could inhibit its translation to a neuromorphic hardware, and learns an
uncharted territory by mapping its identified components into a limited number
of neural representations, through spike-timing dependent plasticity (STDP). In
our ongoing effort to employ a bioinspired SNN-controlled robot to real-world
spatial mapping applications, we demonstrate here how an SNN may robustly
control an autonomous robot in mapping and exploring an unknown environment,
while compensating for its own intrinsic hardware imperfections, such as
partial or total loss of visual input.Comment: 8 pages, 3 Figures, International Conference on Neuromorphic Systems
(ICONS 2018
A Biologically Based Chemo-Sensing UAV for Humanitarian Demining
Antipersonnel mines, weapons of cheap manufacture but lethal effect, have a high impact on the population even decades after the conflicts have finished. Here we investigate the use of a chemo-sensing Unmanned Aerial Vehicle (cUAV) for demining tasks. We developed a blimp based UAV that is equipped with a broadly tuned metal-thin oxide chemo-sensor. A number of chemical mapping strategies were investigated including two biologically based localization strategies derived from the moth chemical search that can optimize the efficiency of the detection and localization of explosives and therefore be used in the demining process. Additionally, we developed a control layer that allows for both fully autonomous and manual controlled flight, as well as for the scheduling of a fleet of cUAVs. Our results confirm the feasibility of this technology for demining in real-world scenarios and give further support to a biologically based approach where the understanding of biological systems is used to solve difficult engineering problems
Accurate path integration in continuous attractor network models of grid cells
Grid cells in the rat entorhinal cortex display strikingly regular firing responses to the animal's position in 2-D space and have been hypothesized to form the neural substrate for dead-reckoning. However, errors accumulate rapidly when velocity inputs are integrated in existing models of grid cell activity. To produce grid-cell-like responses, these models would require frequent resets triggered by external sensory cues. Such inadequacies, shared by various models, cast doubt on the dead-reckoning potential of the grid cell system. Here we focus on the question of accurate path integration, specifically in continuous attractor models of grid cell activity. We show, in contrast to previous models, that continuous attractor models can generate regular triangular grid responses, based on inputs that encode only the rat's velocity and heading direction. We consider the role of the network boundary in the integration performance of the network and show that both periodic and aperiodic networks are capable of accurate path integration, despite important differences in their attractor manifolds. We quantify the rate at which errors in the velocity integration accumulate as a function of network size and intrinsic noise within the network. With a plausible range of parameters and the inclusion of spike variability, our model networks can accurately integrate velocity inputs over a maximum of ~10–100 meters and ~1–10 minutes. These findings form a proof-of-concept that continuous attractor dynamics may underlie velocity integration in the dorsolateral medial entorhinal cortex. The simulations also generate pertinent upper bounds on the accuracy of integration that may be achieved by continuous attractor dynamics in the grid cell network. We suggest experiments to test the continuous attractor model and differentiate it from models in which single cells establish their responses independently of each other
Flying over the Reality Gap: From Simulated to Real Indoor Airships
Because of their ability to naturally float in the air, indoor airships (often called blimps) constitute an appealing platform for research in aerial robotics. However, when confronted to long lasting experiments such as those involving learning or evolutionary techniques, blimps present the disadvantage that they cannot be linked to external power sources and tend to have little mechanical resistance due to their low weight budget. One solution to this problem is to use a realistic flight simulator, which can also significantly reduce experimental duration by running faster than real time. This requires an efficient physical dynamic modelling and parameter identification procedure, which are complicated to develop and usually rely on costly facilities such as wind tunnels. In this paper, we present a simple and efficient physics-based dynamic modelling of indoor airships including a pragmatic methodology for parameter identification without the need for complex or costly test facilities. Our approach is tested with an existing blimp in a vision-based navigation task. Neuronal controllers are evolved in simulation to map visual input into motor commands in order to steer the flying robot forward as fast as possible while avoiding collisions. After evolution, the best individuals are successfully transferred to the physical blimp, which experimentally demonstrates the efficiency of the proposed approach
Continuous attractor network models of grid cell firing based on excitatory-inhibitory interactions
Neurons in the medial entorhinal cortex encode location through spatial firing fields that have a grid‐like organisation. The challenge of identifying mechanisms for grid firing has been addressed through experimental and theoretical investigations of medial entorhinal circuits. Here, we discuss evidence for continuous attractor network models that account for grid firing by synaptic interactions between excitatory and inhibitory cells. These models assume that grid‐like firing patterns are the result of computation of location from velocity inputs, with additional spatial input required to oppose drift in the attractor state. We focus on properties of continuous attractor networks that are revealed by explicitly considering excitatory and inhibitory neurons, their connectivity and their membrane potential dynamics. Models at this level of detail can account for theta‐nested gamma oscillations as well as grid firing, predict spatial firing of interneurons as well as excitatory cells, show how gamma oscillations can be modulated independently from spatial computations, reveal critical roles for neuronal noise, and demonstrate that only a subset of excitatory cells in a network need have grid‐like firing fields. Evaluating experimental data against predictions from detailed network models will be important for establishing the mechanisms mediating grid firing. [Image: see text
Solving Navigational Uncertainty Using Grid Cells on Robots
To successfully navigate their habitats, many mammals use a combination of two mechanisms, path integration and calibration using landmarks, which together enable them to estimate their location and orientation, or pose. In large natural environments, both these mechanisms are characterized by uncertainty: the path integration process is subject to the accumulation of error, while landmark calibration is limited by perceptual ambiguity. It remains unclear how animals form coherent spatial representations in the presence of such uncertainty. Navigation research using robots has determined that uncertainty can be effectively addressed by maintaining multiple probabilistic estimates of a robot's pose. Here we show how conjunctive grid cells in dorsocaudal medial entorhinal cortex (dMEC) may maintain multiple estimates of pose using a brain-based robot navigation system known as RatSLAM. Based both on rodent spatially-responsive cells and functional engineering principles, the cells at the core of the RatSLAM computational model have similar characteristics to rodent grid cells, which we demonstrate by replicating the seminal Moser experiments. We apply the RatSLAM model to a new experimental paradigm designed to examine the responses of a robot or animal in the presence of perceptual ambiguity. Our computational approach enables us to observe short-term population coding of multiple location hypotheses, a phenomenon which would not be easily observable in rodent recordings. We present behavioral and neural evidence demonstrating that the conjunctive grid cells maintain and propagate multiple estimates of pose, enabling the correct pose estimate to be resolved over time even without uniquely identifying cues. While recent research has focused on the grid-like firing characteristics, accuracy and representational capacity of grid cells, our results identify a possible critical and unique role for conjunctive grid cells in filtering sensory uncertainty. We anticipate our study to be a starting point for animal experiments that test navigation in perceptually ambiguous environments
- …
