568 research outputs found
Projection-embedded BYY learning algorithm for Gaussian mixture-based clustering
Abstract
On learning the Gaussian mixture model, existing BYY learning algorithms are featured by a gradient-based line search with an appropriate stepsize. Learning becomes either unstable if the stepsize is too large or slow and gets stuck in a local optimal solution if the stepsize is too small. An algorithm without a learning stepsize has been proposed with expectation-maximization (EM) like two alternative steps. However, its learning process may still be unstable. This paper tackles this problem of unreliability by a modified algorithm called projection-embedded Bayesian Ying-Yang learning algorithm (pBYY). Experiments have shown that pBYY outperforms learning algorithms developed from not only minimum message length with Jeffreys prior (MML-Jef) and Variational Bayesian with Dirichlet-Normal-Wishart (VB-DNW) prior but also BYY with these priors (BYY-Jef and BYY-DNW). pBYY obtains the superiority with an easy implementation, while DNW prior-based learning algorithms suffer a complicated and tedious computation load. The performance of pBYY has also been demonstrated on the Berkeley Segmentation Dataset for the topic of unsupervised image segmentation. The resulted performances of semantic image segmentation have shown that pBYY outperforms not only MML-Jef, VB-DNW, BYY-Jef, and BYY-DNW but also three leading image segmentation algorithms, namely gPb-owt-ucm, MN-Cut, and mean shift.</jats:p
Effect of magnetic field on the spin resonance in FeTe(0.5)Se(0.5) as seen via inelastic neutron scattering
Inelastic neutron scattering and susceptibility measurements have been
performed on the optimally-doped Fe-based superconductor FeTe(0.5)Se(0.5),
which has a critical temperature, Tc of 14 K. The magnetic scattering at the
stripe antiferromagnetic wave-vector Q = (0.5,0.5) exhibits a "resonance" at ~
6 meV, where the scattering intensity increases abruptly when cooled below Tc.
In a 7-T magnetic field parallel to the a-b plane, Tc is slightly reduced to ~
12 K, based on susceptibility measurements. The resonance in the neutron
scattering measurements is also affected by the field. The resonance intensity
under field cooling starts to rise at a lower temperature ~ 12 K, and the low
temperature intensity is also reduced from the zero-field value. Our results
provide clear evidence for the intimate relationship between superconductivity
and the resonance measured in magnetic excitations of Fe-based superconductors.Comment: 4 pages, 3 figure
Direct observation of magnon-phonon coupling in yttrium iron garnet
The magnetic insulator yttrium iron garnet (YIG) with a ferrimagnetic
transition temperature of 560 K has been widely used in microwave and
spintronic devices. Anomalous features in the spin Seeback effect (SSE)
voltages have been observed in Pt/YIG and attributed to the magnon-phonon
coupling. Here we use inelastic neutron scattering to map out low-energy spin
waves and acoustic phonons of YIG at 100 K as a function of increasing magnetic
field. By comparing the zero and 9.1 T data, we find that instead of splitting
and opening up gaps at the spin wave and acoustic phonon dispersion
intersecting points, magnon-phonon coupling in YIG enhances the hybridized
scattering intensity. These results are different from expectations of
conventional spin-lattice coupling, calling for new paradigms to understand the
scattering process of magnon-phonon interactions and the resulting
magnon-polarons.Comment: 5 pages, 4 figures, PRB in pres
- …
