1,331 research outputs found
Comparative host specificity of human- and pig- associated Staphylococcus aureus clonal lineages.
Bacterial adhesion is a crucial step in colonization of the skin. In this study, we investigated the differential adherence to human and pig corneocytes of six Staphylococcus aureus strains belonging to three human-associated [ST8 (CC8), ST22 (CC22) and ST36(CC30)] and two pig-associated [ST398 (CC398) and ST433(CC30)] clonal lineages, and their colonization potential in the pig host was assessed by in vivo competition experiments. Corneocytes were collected from 11 humans and 21 pigs using D-squame® adhesive discs, and bacterial adherence to corneocytes was quantified by a standardized light microscopy assay. A previously described porcine colonization model was used to assess the potential of the six strains to colonize the pig host. Three pregnant, S. aureus-free sows were inoculated intravaginally shortly before farrowing with different strain mixes [mix 1) human and porcine ST398; mix 2) human ST36 and porcine ST433; and mix 3) human ST8, ST22, ST36 and porcine ST398] and the ability of individual strains to colonize the nasal cavity of newborn piglets was evaluated for 28 days after birth by strain-specific antibiotic selective culture. In the corneocyte assay, the pig-associated ST433 strain and the human-associated ST22 and ST36 strains showed significantly greater adhesion to porcine and human corneocytes, respectively (p<0.0001). In contrast, ST8 and ST398 did not display preferential host binding patterns. In the in vivo competition experiment, ST8 was a better colonizer compared to ST22, ST36, and ST433 prevailed over ST36 in colonizing the newborn piglets. These results are partly in agreement with previous genetic and epidemiological studies indicating the host specificity of ST22, ST36 and ST433 and the broad-host range of ST398. However, our in vitro and in vivo experiments revealed an unexpected ability of ST8 to adhere to porcine corneocytes and persist in the nasal cavity of pigs
Cephem Potentiation by Inactivation of Nonessential Genes Involved in Cell Wall Biogenesis of ß-Lactamase-Producing Escherichia coli
Reversal of antimicrobial resistance is an appealing and largely unexplored strategy in drug discovery. The objective of this study was to identify potential targets for “helper” drugs reversing cephem resistance in Escherichia coli strains producing β-lactamases. A CMY-2-encoding plasmid was transferred by conjugation to seven isogenic deletion mutants exhibiting cephem hypersusceptibility. The effect of each mutation was evaluated by comparing the MICs in the wild type and the mutant harboring the same plasmid. Mutation of two genes encoding proteins involved in cell wall biosynthesis, dapF and mrcB, restored susceptibility to cefoxitin (FOX) and reduced the MICs of cefotaxime and ceftazidime, respectively, from the resistant to the intermediate category according to clinical breakpoints. The same mutants harboring a CTX-M-1-encoding plasmid fell into the intermediate or susceptible category for all three drugs. Individual deletion of dapF and mrcB in a clinical isolate of CTX-M-15-producing E. coli sequence type 131 (ST131) resulted in partial reversal of ceftazidime and cefepime resistance but did not reduce MICs below susceptibility breakpoints. Growth curve analysis indicated no fitness cost in a ΔmrcB mutant, whereas a ΔdapF mutant had a 3-fold longer lag phase than the wild type, suggesting that drugs targeting DapF may display antimicrobial activity, in addition to synergizing with selected cephems. DapF appeared to be a potential FOX helper drug target candidate, since dapF inactivation resulted in synergistic potentiation of FOX in the genetic backgrounds tested. The study showed that individual inactivation of two nonessential genes involved in cell wall biogenesis potentiates cephem activity according to drug- and strain-specific patterns
Systematic Review on Global Epidemiology of Methicillin-Resistant Staphylococcus pseudintermedius: Inference of Population Structure from Multilocus Sequence Typing Data
Background and rationale: Methicillin-resistant Staphylococcus pseudintermedius (MRSP) is a major cause of infections in dogs, also posing a zoonotic risk to humans. This systematic review aimed to determine the global epidemiology of MRSP and provide new insights into the population structure of this important veterinary pathogen.Methodology: Web of Science was searched systematically for articles reporting data on multilocus sequence typing (MLST) of S. pseudintermedius isolates from dogs or other animal or human patients and carriers. Data from the eligible studies were then integrated with data from the MLST database for this species. Analysis of MLST data was performed with eBURST and ClonalFrame, and the proportion of MRSP isolates resistant to selected antimicrobial drugs was determined for the most predominant clonal complexes.Results: Fifty-eight studies published over the last 10 years were included in the review. MRSP represented 76% of the 1428 isolates characterized by the current MLST scheme. The population of S. pseudintermedius was highly diverse and included five major MRSP clonal complexes (CCs). CC71, previously described as the epidemic European clone, is now widespread worldwide. In Europe, CC258, which is more frequently susceptible to enrofloxacin and aminoglycosides, and more frequently resistant to sulphonamides/trimethoprim than CC71, is increasingly reported in various countries. CC68, previously described as the epidemic North American clone, is frequently reported in this region but also in Europe, while CC45 (associated with chloramphenicol resistance) and CC112 are prevalent in Asia. It was estimated that clonal diversification in this species is primarily driven by homologous recombination (r/m=7.52).Conclusion: This study provides evidence that S. pseudintermedius has an epidemic population structure, in which five successful MRSP clones with specific traits regarding antimicrobial resistance, genetic diversity and geographical distribution have emerged upon a weakly clonal background through acquisition of SCCmec and other mobile genetic elements
Recommendations for approaches to meticillin-resistant staphylococcal infections of small animals: diagnosis, therapeutic considerations and preventative measures
Susceptibility in vitro of canine methicillin-resistant and -susceptible staphylococcal isolates to fusidic acid, chlorhexidine and miconazole: opportunities for topical therapy of canine superficial pyoderma
OBJECTIVES: Increasing multidrug resistance amongst canine pathogenic staphylococci has renewed interest in topical antibacterial therapy for skin infections in the context of responsible veterinary prescribing. We therefore determined the activity in vitro of three clinically relevant topical agents and synergism between two of them against Staphylococcus pseudintermedius and Staphylococcus aureus. METHODS: The MICs of fusidic acid (n = 199), chlorhexidine (n = 198), miconazole (n = 198) and a 1:1 combination of miconazole/chlorhexidine (n = 198) were determined for canine isolates [50 MRSA and 49 methicillin-resistant S. pseudintermedius (MRSP), 50 MSSA and 50 methicillin-susceptible S. pseudintermedius (MSSP)] collected from the UK and Germany using an agar dilution method (CLSI VET01-A4). Fractional inhibitory concentration (FIC) indices were calculated to assess the interaction of miconazole with chlorhexidine. RESULTS: MICs of each drug/combination were significantly (P < 0.0005) higher for S. aureus when compared with S. pseudintermedius. Most strains (n = 172) had an MIC of fusidic acid of ≤0.03 mg/L (MIC ≥64 mg/L, n = 5 MRSA). All strains had MICs of chlorhexidine of 0.5–4 mg/L, except for one MRSA (MIC = 8 mg/L). All but four strains had MICs of miconazole of 1–4 mg/L (MIC = 16 mg/L, n = 3; MIC = 256 mg/L, n = 1). Miconazole/chlorhexidine (1:1 ratio) had a synergistic effect against 49/50 MRSA, 31/50 MSSA, 12/49 MRSP and 23/49 MSSP. CONCLUSIONS: Since the majority of these staphylococci, including methicillin-resistant isolates, had MICs that should be readily exceeded by topical skin application of these agents, their therapeutic efficacy for canine superficial pyoderma should be assessed. The synergistic interaction shown in vitro supports further clinical evaluation of miconazole/chlorhexidine combination therapy for staphylococcal infection
Antimicrobial synergy between carprofen and doxycycline against methicillin-resistant Staphylococcus pseudintermedius ST71
BACKGROUND: New therapeutic strategies are needed to face the rapid spread of multidrug-resistant staphylococci in veterinary medicine. The objective of this study was to identify synergies between antimicrobial and non-antimicrobial drugs commonly used in companion animals as a possible strategy to restore antimicrobial susceptibility in methicillin-resistant Staphylococcus pseudintermedius (MRSP). RESULTS: A total of 216 antimicrobial/non-antimicrobial drug combinations were screened by disk diffusion using a clinical MRSP sequence type (ST) 71 strain resistant to all six antimicrobials tested (ampicillin, ciprofloxacin, clindamycin, doxycycline, oxacillin and trimethoprim/sulfamethoxazole). The most promising drug combination (doxycycline-carprofen) was further assessed by checkerboard testing extended to four additional MRSP strains belonging to ST71 or ST68, and by growth inhibition experiments. Seven non-antimicrobial drugs (bromhexine, acepromazine, amitriptyline, clomipramine, carprofen, fluoxetine and ketoconazole) displayed minimum inhibitory concentrations (MICs) ranging between 32 and >4096 mg/L, and enhanced antimicrobial activity of one or more antimicrobials. Secondary screening by checkerboard assay revealed a synergistic antimicrobial effect between carprofen and doxycycline, with the sum of the fractional inhibitory concentration indexes (ΣFICI) ranging between 0.3 and 0.5 depending on drug concentration. Checkerboard testing of multiple MRSP strains revealed a clear association between synergy and carriage of tetK, which is a typical feature of MRSP ST71. An increased growth inhibition was observed when MRSP ST71 cells in exponential phase were exposed to 0.5/32 mg/L of doxycycline/carprofen compared to individual drug exposure. CONCLUSIONS: Carprofen restores in vitro susceptibility to doxycycline in S. pseudintermedius strains carrying tetK such as MRSP ST71. Further research is warranted to elucidate the molecular mechanism behind the identified synergy and its linkage to tetK
Differential Analysis of the Nasal Microbiome of Pig Carriers or Non-Carriers of Staphylococcus aureus
Staphylococcus aureus is presently regarded as an emerging zoonotic agent due to the spread of specific methicillin-resistant S. aureus (MRSA) clones in pig farms. Studying the microbiota can be useful for the identification of bacteria that antagonize such opportunistic veterinary and zoonotic pathogen in animal carriers. The aim of this study was to determine whether the nasal microbiome of pig S. aureus carriers differs from that of non-carriers. The V3-V5 region of the 16S rRNA gene was sequenced from nasal swabs of 44 S. aureus carriers and 56 non-carriers using the 454 GS FLX titanium system. Carriers and non-carriers were selected on the basis of quantitative longitudinal data on S. aureus carriage in 600 pigs sampled at 20 Danish herds included in two previous studies in Denmark. Raw sequences were analysed with the BION meta package and the resulting abundance matrix was analysed using the DESeq2 package in R to identify operational taxonomic units (OTUs) with differential abundance between S. aureus carriers and non-carriers. Twenty OTUs were significantly associated to non-carriers, including species with known probiotic potential and antimicrobial effect such as lactic acid-producing isolates described among Leuconostoc spp. and some members of the Lachnospiraceae family, which is known for butyrate production. Further 5 OTUs were significantly associated to carriage, including known pathogenic bacteria such as Pasteurella multocida and Klebsiella spp. Our results show that the nasal microbiome of pigs that are not colonized with S. aureus harbours several species/taxa that are significantly less abundant in pig carriers, suggesting that the nasal microbiota may play a role in the individual predisposition to S. aureus nasal carriage in pigs. Further research is warranted to isolate these bacteria and assess their possible antagonistic effect on S. aureus for the pursuit of new strategies to control MRSA in pig farming
Inhibition of C. difficile and C. perfringens by commercial and potential probiotic strains and their in-vitro growth characteristics
Evidence for the evolutionary steps leading to mecA-mediated ß-lactam resistance in staphylococci
The epidemiologically most important mechanism of antibiotic resistance in Staphylococcus aureus is associated with mecA–an acquired gene encoding an extra penicillin-binding protein (PBP2a) with low affinity to virtually all β-lactams. The introduction of mecA into the S. aureus chromosome has led to the emergence of methicillin-resistant S. aureus (MRSA) pandemics, responsible for high rates of mortality worldwide. Nonetheless, little is known regarding the origin and evolution of mecA. Different mecA homologues have been identified in species belonging to the Staphylococcus sciuri group representing the most primitive staphylococci. In this study we aimed to identify evolutionary steps linking these mecA precursors to the β-lactam resistance gene mecA and the resistance phenotype. We sequenced genomes of 106 S. sciuri, S. vitulinus and S. fleurettii strains and determined their oxacillin susceptibility profiles. Single-nucleotide polymorphism (SNP) analysis of the core genome was performed to assess the genetic relatedness of the isolates. Phylogenetic analysis of the mecA gene homologues and promoters was achieved through nucleotide/amino acid sequence alignments and mutation rates were estimated using a Bayesian analysis. Furthermore, the predicted structure of mecA homologue-encoded PBPs of oxacillin-susceptible and -resistant strains were compared. We showed for the first time that oxacillin resistance in the S. sciuri group has emerged multiple times and by a variety of different mechanisms. Development of resistance occurred through several steps including structural diversification of the non-binding domain of native PBPs; changes in the promoters of mecA homologues; acquisition of SCCmec and adaptation of the bacterial genetic background. Moreover, our results suggest that it was exposure to β-lactams in human-created environments that has driven evolution of native PBPs towards a resistance determinant. The evolution of β-lactam resistance in staphylococci highlights the numerous resources available to bacteria to adapt to the selective pressure of antibiotics
Relation between tetR and tetA expression in tetracycline resistant Escherichia coli
BACKGROUND: Tetracyclines are among the most used antibiotics in livestock worldwide. Resistance is widely disseminated in Escherichia coli, where it is generally mediated by tetracycline efflux pumps, such as TetA. Expression of tetracycline efflux pumps is tightly controlled by the repressor TetR, which has been shown to be tetracycline-responsive at sub-MIC tetracycline concentrations. The objective of this study was to investigate the effects of increasing tetracycline concentrations on the growth of TetA-producing E. coli, and to determine how expression of tetA and tetR related to each other in different growth phases in the presence of tetracycline. RESULTS: A tetracycline resistant E. coli strain containing tetA and tetR on the chromosome was constructed and cultured in the presence of increasing concentrations of tetracycline. Expression of tetR and tetA was measured at four time points in different growth phases by quantitative real-time PCR. The TetA-producing E. coli exhibited prolonged lag phase with increasing concentrations of tetracycline, while expression of tetA and tetR increased and decreased, respectively, with increasing tetracycline concentration. The levels of tetA and tetR mRNA varied depending on growth phase, resulting in a gradual decrease of the tetA/tetR ratio from approximately 4 in the lag phase to approximately 2 in the stationary phase. CONCLUSION: This study shows that the expression of tetR and tetA is tetracycline concentration- and growth phase-dependent, contributing to improved understanding of the relationships between E. coli growth, tetracycline exposure and expression of tetracycline resistance. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12866-016-0649-z) contains supplementary material, which is available to authorized users
- …
