1,631 research outputs found

    Pointlike probes of superstring-theoretic superfluids

    Full text link
    In analogy with an experimental setup used in liquid helium, we use a pointlike probe to study superfluids which have a gravity dual. In the gravity description, the probe is represented by a hanging string. We demonstrate that there is a critical velocity below which the probe particle feels neither drag nor stochastic forces. Above this critical velocity, there is power-law scaling for the drag force, and the stochastic forces are characterized by a finite, velocity-dependent temperature. This temperature participates in two simple and general relations between the drag force and stochastic forces. The formula we derive for the critical velocity indicates that the low-energy excitations are massless, and they demonstrate the power of stringy methods in describing strongly coupled superfluids.Comment: 17 pages, 2 figures, added a figure, a reference, and moved material to an appendi

    Low temperature properties of holographic condensates

    Full text link
    In the current work we study various models of holographic superconductors at low temperature. Generically the zero temperature limit of those models are solitonic solution with a zero sized horizon. Here we generalized simple version of those zero temperature solutions to small but non-zero temperature T. We confine ourselves to cases where near horizon geometry is AdS^4. At a non-zero temperature a small horizon would form deep inside this AdS^4 which does not disturb the UV physics. The resulting geometry may be matched with the zero temperature solution at an intermediate length scale. We understand this matching from separation of scales by setting up a perturbative expansion in gauge potential. We have a better analytic control in abelian case and quantities may be expressed in terms of hypergeometric function. From this we calculate low temperature behavior of various quatities like entropy, charge density and specific heat etc. We also calculate various energy gaps associated with p-wave holographic superconductor to understand the underlying pairing mechanism. The result deviates significantly from the corresponding weak coupling BCS counterpart.Comment: 17 Page

    Quantum Critical Superfluid Flows and Anisotropic Domain Walls

    Get PDF
    We construct charged anisotropic AdS domain walls as solutions of a consistent truncation of type IIB string theory. These are a one-parameter family of solutions that flow to an AdS fixed point in the IR, exhibiting emergent conformal invariance and quantum criticality. They represent the zero-temperature limit of the holographic superfluids at finite superfluid velocity constructed in arXiv:1010.5777. We show that these domain walls exist only for velocities less than a critical value, agreeing in detail with a conjecture made there. We also comment about the IR limits of flows with velocities higher than this critical value, and point out an intriguing similarity between the phase diagrams of holographic superfluid flows and those of ordinary superconductors with imbalanced chemical potential.Comment: 11 pages, 3 figures. V2: Very minor corrections. JHEP versio

    Fermion correlators in non-abelian holographic superconductors

    Full text link
    We consider fermion correlators in non-abelian holographic superconductors. The spectral function of the fermions exhibits several interesting features such as support in displaced Dirac cones and an asymmetric distribution of normal modes. These features are compared to similar ones observed in angle resolved photoemission experiments on high T_c superconductors. Along the way we elucidate some properties of p-wave superconductors in AdS_4 and discuss the construction of SO(4) superconductors.Comment: 49 pages, 11 figure

    p-wave Holographic Superconductors and five-dimensional gauged Supergravity

    Full text link
    We explore five-dimensional N=4{\cal N}=4 SU(2)×U(1)SU(2)\times U(1) and N=8{\cal N}=8 SO(6) gauged supergravities as frameworks for condensed matter applications. These theories contain charged (dilatonic) black holes and 2-forms which have non-trivial quantum numbers with respect to U(1) subgroups of SO(6). A question of interest is whether they also contain black holes with two-form hair with the required asymptotic to give rise to holographic superconductivity. We first consider the N=4{\cal N}=4 case, which contains a complex two-form potential AμνA_{\mu\nu} which has U(1) charge ±1\pm 1. We find that a slight generalization, where the two-form potential has an arbitrary charge qq, leads to a five-dimensional model that exhibits second-order superconducting transitions of p-wave type where the role of order parameter is played by AμνA_{\mu\nu}, provided q5.6q \gtrsim 5.6. We identify the operator that condenses in the dual CFT, which is closely related to N=4{\cal N}=4 Super Yang-Mills theory with chemical potentials. Similar phase transitions between R-charged black holes and black holes with 2-form hair are found in a generalized version of the N=8{\cal N}=8 gauged supergravity Lagrangian where the two-forms have charge q1.8q\gtrsim 1.8.Comment: 35 pages, 14 figure

    Type IIB Holographic Superfluid Flows

    Get PDF
    We construct fully backreacted holographic superfluid flow solutions in a five-dimensional theory that arises as a consistent truncation of low energy type IIB string theory. We construct a black hole with scalar and vector hair in this theory, and study the phase diagram. As expected, the superfluid phase ceases to exist for high enough superfluid velocity, but we show that the phase transition between normal and superfluid phases is always second order. We also analyze the zero temperature limit of these solutions. Interestingly, we find evidence that the emergent IR conformal symmetry of the zero-temperature domain wall is broken at high enough velocity.Comment: v3: Published version. Figures 5 and 6 corrected. 24 pages, 7 figure

    d+idd+id Holographic Superconductors

    Full text link
    A holographic model of d+idd+id superconductors based on the action proposed by Benini, Herzog, and Yarom [arXiv:1006.0731] is studied. This model has a charged spin two field in an AdS black hole spacetime. Working in the probe limit, the normalizable solution of the spin two field in the bulk gives rise to a d+idd+id superconducting order parameter at the boundary of the AdS. We calculate the fermion spectral function in this\ superconducting background and confirm the existence of fermi arcs for non-vanishing Majorana couplings. By changing the relative strength γ\gamma of the dd and idid condensations, the position and the size of the fermi arcs are changed. When γ=1\gamma =1, the spectrum becomes isotropic and the spectral function is s-wave like. By changing the fermion mass, the fermi momentum is changed. We also calculate the conductivity for these holographic d+idd+id superconductors where time reversal symmetry has been broken spontaneously. A non-vanishing Hall conductivity is obtained even without an external magnetic field.Comment: 24 pages,17 figures, Add more discussions on hall conductivity, two new figures, Matched with published versio

    Domain Wall Holography for Finite Temperature Scaling Solutions

    Get PDF
    We investigate a class of near-extremal solutions of Einstein-Maxwell-scalar theory with electric charge and power law scaling, dual to charged IR phases of relativistic field theories at low temperature. These are exact solutions of theories with domain wall vacua; hence, we use nonconformal holography to relate the bulk and boundary theories. We numerically construct a global interpolating solution between the IR charged solutions and the UV domain wall vacua for arbitrary physical choices of Lagrangian parameters. By passing to a conformal frame in which the domain wall metric becomes that of AdS, we uncover a generalized scale invariance of the IR scaling solution, indicating a connection to the physics of Lifshitz fixed points. Finally, guided by effective field theoretic principles and the physics of nonconformal D-branes, we argue for the applicability of domain wall holography even in theories with AdS critical points, namely those theories for which a scalar potential is dominated by a single exponential term over a large range

    Quantum Criticality and Holographic Superconductors in M-theory

    Full text link
    We present a consistent Kaluza-Klein truncation of D=11 supergravity on an arbitrary seven-dimensional Sasaki-Einstein space (SE_7) to a D=4 theory containing a metric, a gauge-field, a complex scalar field and a real scalar field. We use this D=4 theory to construct various black hole solutions that describe the thermodynamics of the d=3 CFTs dual to skew-whiffed AdS_4 X SE_7 solutions. We show that these CFTs have a rich phase diagram, including holographic superconductivity with, generically, broken parity and time reversal invariance. At zero temperature the superconducting solutions are charged domain walls with a universal emergent conformal symmetry in the far infrared.Comment: 52 pages, 16 figures, 3 appendices; minor changes, version to be published in JHE

    Holographic Superconductor/Insulator Transition at Zero Temperature

    Get PDF
    We analyze the five-dimensional AdS gravity coupled to a gauge field and a charged scalar field. Under a Scherk-Schwarz compactification, we show that the system undergoes a superconductor/insulator transition at zero temperature in 2+1 dimensions as we change the chemical potential. By taking into account a confinement/deconfinement transition, the phase diagram turns out to have a rich structure. We will observe that it has a similarity with the RVB (resonating valence bond) approach to high-Tc superconductors via an emergent gauge symmetry.Comment: 25 pages, 23 figures; A new subsection on a concrete string theory embedding added, references added (v2); Typos corrected, references added (v3
    corecore