37 research outputs found

    Diazido mixed-amine platinum(IV) anticancer complexes activatable by visible-light form novel DNA adducts

    Get PDF
    Platinum diam(m)ine complexes, such as cisplatin, are successful anticancer drugs, but suffer from problems of resistance and side-effects. Photoactivatable PtIV prodrugs offer the potential of targeted drug release and new mechanisms of action. We report the synthesis, X-ray crystallographic and spectroscopic properties of photoactivatable diazido complexes trans,trans,trans-[Pt(N3)2(OH)2(MA)(Py)] (1; MA=methylamine, Py=pyridine) and trans,trans,trans-[Pt(N3)2(OH)2(MA)(Tz)] (2; Tz=thiazole), and interpret their photophysical properties by TD-DFT modelling. The orientation of the azido groups is highly dependent on H bonding and crystal packing, as shown by polymorphs 1 p and 1 q. Complexes 1 and 2 are stable in the dark towards hydrolysis and glutathione reduction, but undergo rapid photoreduction with UVA or blue light with minimal amine photodissociation. They are over an order of magnitude more potent towards HaCaT keratinocytes, A2780 ovarian, and OE19 oesophageal carcinoma cells than cisplatin and show particular potency towards cisplatin-resistant human ovarian cancer cells (A2780cis). Analysis of binding to calf-thymus (CT), plasmids, oligonucleotide DNA and individual nucleotides reveals that photoactivated 1 and 2 form both mono- and bifunctional DNA lesions, with preference for G and C, similar to transplatin, but with significantly larger unwinding angles and a higher percentage of interstrand cross-links, with evidence for DNA strand cross-linking further supported by a comet assay. DNA lesions of 1 and 2 on a 50 bp duplex were not recognised by HMGB1 protein, in contrast to cisplatin-type lesions. The photo-induced platination reactions of DNA by 1 and 2 show similarities with the products of the dark reactions of the PtII compounds trans-[PtCl2(MA)(Py)] (5) and trans-[PtCl2(MA)(Tz)] (6). Following photoactivation, complex 2 reacted most rapidly with CT DNA, followed by 1, whereas the dark reactions of 5 and 6 with DNA were comparatively slow. Complexes 1 and 2 can therefore give rapid potent photocytotoxicity and novel DNA lesions in cancer cells, with no activity in the absence of irradiation

    Synthesis, Biological Activity, and DNA-Damage Profile of Platinum-Threading Intercalator Conjugates Designed To Target Adenine

    No full text
    PT-ACRAMTU {[PtCl(en)(ACRAMTU)](NO3)2, 2; ACRAMTU = 1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea, 1, en = ethane-1,2-diamine} is the prototype of a series of DNA-targeted adenine-affinic dual intercalating/platinating agents. Several novel 4,9-disubstituted acridines and the corresponding platinum−acridine conjugates were synthesized. The newly introduced 4-carboxamide side chains contain H-bond donor/acceptor functions designed to promote groove- and sequence-specific platinum binding. In HL-60 (leukemia) and H460 (lung) cancer cells, IC50 values in the micromolar to millimolar range were observed. Several of the intercalators show enhanced cytotoxicity compared to prototype 1, but conjugate 2 appears to be the most potent hybrid agent. Enzymatic digestion assays in conjunction with liquid chromatography−electrospray mass spectrometry analysis indicate that the new conjugates produce PT-ACRAMTU-type DNA damage. Platinum-modified 2‘-deoxyguanosine, dG*, and several dinucleotide fragments, d(NpN)*, were detected. One of the conjugates showed significantly higher levels of binding to A-containing sites than conjugate 2 (35 ± 3% vs 24 ± 3%). Possible structure−activity relationships are discussed

    Tuning the DNA Conformational Perturbations Induced by Cytotoxic Platinum−Acridine Bisintercalators: Effect of Metal Cis/Trans Isomerism and DNA Threading Groups

    No full text
    Four highly charged, water soluble platinum−acridine bisintercalating agents have been synthesized. Depending on the cis/trans isomerism of the metal and the nature of the acridine side chains, bisintercalation induces/stabilizes the classical Watson−Crick B-form or a non-B-form. Circular dichroism spectra and chemical footprinting experiments suggest that 4, the most active derivative in HL-60 cells, produces a structurally severely perturbed DNA with features of a Hoogsteen base-paired biopolymer

    Combretastatin dinitrogen-substituted stilbene analogues as tubulin-binding and vascular-disrupting agents

    No full text
    Several stilbenoid compounds having structural similarity to the combretastatin group of natural products and characterized by the incorporation of two nitrogen-bearing groups (amine, nitro, serinamide) have been prepared by chemical synthesis and evaluated in terms of biochemical and biological activity. The 2′,3′-diamino B-ring analogue 17 demonstrated remarkable cytotoxicity against selected human cancer cell lines in vitro (average GI50 = 13.9 nM) and also showed good activity in regard to inhibition of tubulin assembly (IC50 = 2.8 μM). In addition, a single dose (10 mg/kg) of compound 17 caused a 40% tumor-selective blood flow shutdown in tumor-bearing SCID mice at 24 h, thus suggesting the potential value of this compound and its corresponding salt formulations as new vascular-disrupting agents. © 2008 American Chemical Society and American Society of Pharmacognosy

    Effect of the Diamine Nonleaving Group in Platinum−Acridinylthiourea Conjugates on DNA Damage and Cytotoxicity

    No full text
    The following complexes of type [PtCl(R)(ACRAMTU)](NO3)2 (ACRAMTU = 1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea)), derived from prototype 1 (with R = ethane-1,2-diamine), were synthesized:  2 (with R = (1R,2R)-1,2-diaminocyclohexane), 3 (with R = propane-1,3-diamine), 4 (with R = N,N1,N,N2-tetramethylethane-1,2-diamine), and 5 (with R = 2,2‘-bipyridine). The DNA sequence specificity of the conjugates and their antiproliferative potential in HL-60 and H460 cells were investigated. Conjugate 3 showed the strongest non-cisplatin-type DNA damage in polymerase stop assays and superior cell kill efficacy in H460 lung cancer (IC50 = 70 nM)
    corecore