57 research outputs found

    Monte Carlo simulations of random non-commutative geometries

    Get PDF
    Random non-commutative geometries are introduced by integrating over the space of Dirac operators that form a spectral triple with a fixed algebra and Hilbert space. The cases with the simplest types of Clifford algebra are investigated using Monte Carlo simulations to compute the integrals. Various qualitatively different types of behaviour of these random Dirac operators are exhibited. Some features are explained in terms of the theory of random matrices but other phenomena remain mysterious. Some of the models with a quartic action of symmetry-breaking type display a phase transition. Close to the phase transition the spectrum of a typical Dirac operator shows manifold-like behaviour for the eigenvalues below a cut-off scale

    Volume MLS Ray Casting

    Full text link

    Learning Graph-Convolutional Representations for Point Cloud Denoising

    Get PDF
    Point clouds are an increasingly relevant data type but they are often corrupted by noise. We propose a deep neural network based on graph-convolutional layers that can elegantly deal with the permutation-invariance problem encountered by learning-based point cloud processing methods. The network is fully-convolutional and can build complex hierarchies of features by dynamically constructing neighborhood graphs from similarity among the high-dimensional feature representations of the points. When coupled with a loss promoting proximity to the ideal surface, the proposed approach significantly outperforms state-of-the-art methods on a variety of metrics. In particular, it is able to improve in terms of Chamfer measure and of quality of the surface normals that can be estimated from the denoised data. We also show that it is especially robust both at high noise levels and in presence of structured noise such as the one encountered in real LiDAR scans.Comment: European Conference on Computer Vision (ECCV) 202

    Robust Poisson Surface Reconstruction

    Full text link
    Abstract. We propose a method to reconstruct surfaces from oriented point clouds with non-uniform sampling and noise by formulating the problem as a convex minimization that reconstructs the indicator func-tion of the surface’s interior. Compared to previous models, our recon-struction is robust to noise and outliers because it substitutes the least-squares fidelity term by a robust Huber penalty; this allows to recover sharp corners and avoids the shrinking bias of least squares. We choose an implicit parametrization to reconstruct surfaces of unknown topology and close large gaps in the point cloud. For an efficient representation, we approximate the implicit function by a hierarchy of locally supported basis elements adapted to the geometry of the surface. Unlike ad-hoc bases over an octree, our hierarchical B-splines from isogeometric analysis locally adapt the mesh and degree of the splines during reconstruction. The hi-erarchical structure of the basis speeds-up the minimization and efficiently represents clustered data. We also advocate for convex optimization, in-stead isogeometric finite-element techniques, to efficiently solve the min-imization and allow for non-differentiable functionals. Experiments show state-of-the-art performance within a more flexible framework.

    Intrinsic Noise Analyzer: A Software Package for the Exploration of Stochastic Biochemical Kinetics Using the System Size Expansion

    Get PDF
    The accepted stochastic descriptions of biochemical dynamics under well-mixed conditions are given by the Chemical Master Equation and the Stochastic Simulation Algorithm, which are equivalent. The latter is a Monte-Carlo method, which, despite enjoying broad availability in a large number of existing software packages, is computationally expensive due to the huge amounts of ensemble averaging required for obtaining accurate statistical information. The former is a set of coupled differential-difference equations for the probability of the system being in any one of the possible mesoscopic states; these equations are typically computationally intractable because of the inherently large state space. Here we introduce the software package intrinsic Noise Analyzer (iNA), which allows for systematic analysis of stochastic biochemical kinetics by means of van Kampen’s system size expansion of the Chemical Master Equation. iNA is platform independent and supports the popular SBML format natively. The present implementation is the first to adopt a complementary approach that combines state-of-the-art analysis tools using the computer algebra system Ginac with traditional methods of stochastic simulation. iNA integrates two approximation methods based on the system size expansion, the Linear Noise Approximation and effective mesoscopic rate equations, which to-date have not been available to non-expert users, into an easy-to-use graphical user interface. In particular, the present methods allow for quick approximate analysis of time-dependent mean concentrations, variances, covariances and correlations coefficients, which typically outperforms stochastic simulations. These analytical tools are complemented by automated multi-core stochastic simulations with direct statistical evaluation and visualization. We showcase iNA’s performance by using it to explore the stochastic properties of cooperative and non-cooperative enzyme kinetics and a gene network associated with circadian rhythms. The software iNA is freely available as executable binaries for Linux, MacOSX and Microsoft Windows, as well as the full source code under an open source license

    Least Squares Subdivision Surfaces

    No full text
    The usual approach to design subdivision schemes for curves and surfaces basically consists in combining proper rules for regular configurations, with some specific heuristics to handle extraordinary vertices. In this paper, we introduce an alternative approach, called Least Squares Subdivision Surfaces (LS), where the key idea is to iteratively project each vertex onto a local approximation of the current polygonal mesh. While the resulting procedure haves the same complexity as simpler subdivision schemes, our method offers much higher visual quality, especially in the vicinity of extraordinary vertices. Moreover, we show it can be easily generalized to support boundaries and creases. The fitting procedure allows for a local control of the surface from the normals, making LS3 very well suited for interactive freeform modeling applications. We demonstrate our approach on diadic triangular and quadrangular refinement schemes, though it can be applied to any splitting strategies.Computer Graphics Forum29

    Interpolatory Refinement for Real-Time Processing ofPoint-Based Geometry

    No full text
    Computer Graphics Forum24

    Real-Time Point Cloud Refinement

    No full text
    Splatting-based rendering techniques are currently the best choice for efficient high quality rendering of pointbased geometries. However, such techniques are not suitable for large magnification, especially when the object is under-sampled. This paper improves the rendering quality of pure splatting techniques using a fast dynamic up-sampling algorithm for point-based geometry. Our algorithm is inspired by interpolatory subdivision surfaces where the geometry is refined iteratively. At each step the refined geometry is that from the previous step enriched by a new set of points. The point insertion procedure uses three operators: a local neighborhood selection operator, a refinement operator (adding new points) and a smoothing operator. Even though our insertion procedure makes the analysis of the limit surface complicated and it does not guarantee its G1 continuity, it remains very efficient for high quality real-time point rendering. Indeed, while providing an increased rendering quality, especially for large magnification, our algorithm needs no other preprocessing nor any additional information beyond that used by any splatting technique.SPBG'04 Symposium on Point - Based Graphics 200

    Least Squares Subdivision Surfaces

    Full text link
    International audienc

    Feature Preserving Point Set Surfaces based on Non-Linear Kernel Regression

    No full text
    Moving least squares (MLS) is a very attractive tool to design effective meshless surface representations. However, as long as approximations are performed in a least square sense, the resulting definitions remain sensitive to outliers, and smooth-out small or sharp features. In this paper, we address these major issues, and present a novel point based surface definition combining the simplicity of implicit MLS surfaces [SOS04,Kol05] with the strength of robust statistics. To reach this new definition, we review MLS surfaces in terms of local kernel regression, opening the doors to a vast and well established literature from which we utilize robust kernel regression. Our novel representation can handle sparse sampling, generates a continuous surface better preserving fine details, and can naturally handle any kind of sharp features with controllable sharpness. Finally, it combines ease of implementation with performance competing with other non-robust approaches.Computer Graphics Forum28
    corecore