72 research outputs found
The influence of ecological and geographical context in the radiation of Neotropical sigmodontine rodents
Abstract
Background
Much debate has focused on how transitions in life history have influenced the proliferation of some clades. Rodents of the subfamily Sigmodontinae (family Cricetidae) comprise one of the most diverse clades of Neotropical mammals (~400 living species in 86 genera). These rodents occupy a wide range of habitats and lifestyles so that ecological context seems relevant to understand the evolution of this group. Several changes in the landscape of South America through the Neogene might have provided vast resources and opportunity to diversify. The aim of this study was to examine whether transitions between i) lowland and montane habitats, ii) open vegetation and forest, and iii) distinct molar architectures are correlated with shifts in diversification rates and to characterize the general pattern of diversification.
Results
Based on a dense taxon sampling of 269 species, we recovered a new phylogeny of Sigmodontinae that is topologically consistent with those of previous studies. It indicates that the subfamily and its major lineages appeared during the Late Miocene. Analyses suggest that vegetation type and elevational range are correlated with diversification rates, but not molar architecture. Tropical lowlands accumulated more lineage diversity than other areas and also supported high speciation rates. Across the radiation the subfamily Sigmodontinae appear to have experienced a decline in diversification rate through time. We detected mixed evidence for lineage-specific diversification rate shifts (e.g., leading to the clades of Akodon, Bibimys, Calomys and Thomasomys).
Conclusion
We report that the evolution of habitat preference (considering vegetation type and elevational range) was associated with diversification rates among sigmodontine rodents. We propose that the observed diversification slowdown might be the result of ecological or geographical constraints. Our results also highlight the influence of the tropical lowlands -which might have acted as both “a cradle and a museum of species.” The tropical lowlands accumulated greater diversity than the remainder of the group's range.
</jats:sec
Hiperactivation of right inferior frontal cortex in young binge drinkers during response inhibition: A follow-up study
This is the peer reviewed version of the following article: López-Caneda E; Cadaveira F; Crego A; Gómez-Suárez AF; Corral M; Parada M; Caamaño F; Rodríguez Holguín S (2012). Hiperactivation of right inferior frontal cortex in young binge drinkers during response inhibition: a follow-up study, Addiction, 107, 1796-1808, which has been published in final form at https://doi.org/10.1111/j.1360-0443.2012.03908.x. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived VersionsAims: The objective of this study was to examine brain activity, with particular attention to prefrontal function, during response execution and inhibition in youths who have engaged in binge drinking (BD) for at least 2 years. Design: Event‐related potentials (ERPs) were recorded twice within 3 years, during performance of a Go/NoGo task. Setting: The study was part of a longitudinal study of the neurocognitive effects of BD. Participants: A total of 48 undergraduate students, 25 controls (14 females) and 23 binge drinkers (10 females), with no personal or family history of alcoholism or psychopathological disorders. Measurements: The Go‐P3 and NoGo‐P3 components of the ERPs were examined by principal component analysis and exact low‐resolution tomography analysis (eLORETA). Findings: Binge drinkers showed larger Go‐P3 amplitudes than controls in the first and second evaluations (P = 0.019). They also showed larger NoGo‐P3 amplitude in the second evaluation (P = 0.002). eLORETA analyses in the second evaluation revealed significantly greater activation of the right inferior frontal cortex (rIFC) in binge drinkers than in controls during successful inhibition (P < 0.05). Conclusions: Young binge drinkers appear to show abnormal brain activity as measured by event‐related potentials during response execution and inhibition which may represent a neural antecedent of difficulties in impulse controlThe study was supported by a grant from the Consellería de Industria e Inovación Sectorial de la Xunta de Galicia (INCITE08PXIB211015PR), two grants from the Ministerio de Ciencia e Innovación of Spain (EDU2008‐03400; PSI2011‐22575) and through the FPU programme (AP2008‐03433) of the Ministerio de Educación of SpainS
Temas Socio-Jurídicos. Volumen 31 No. 63 Diciembre de 2012
La revista Temas Socio-jurídicos es una publicación seriada del Centro de Investigaciones Socio-jurídicas, dependencia adscrita a la Facultad de Derecho de la Universidad Autónoma de Bucaramanga, que se dirige principalmente a abogados, profesionales de las ciencias sociales y humanas, a estudiantes de derecho y de ciencias sociales y humanas.The Socio-legal Issues magazine is a serial publication of the Center for Socio-legal Research, a dependency attached to the Faculty of Law of the Autonomous University of Bucaramanga, which is mainly aimed at lawyers, professionals in the social and human sciences, students of law and social and human sciences
Transnational dialogues between specialist and institutional knowledge in occupational accident legislation, first half of the twentieth century
Pan American Crohn's and Colitis Organization (PANCCO) and the Interamerican Society of Endoscopy (SIED) consensus on endoscopy in inflammatory bowel disease
Introducción: La endoscopia juega un papel fundamental en la enfermedad inflamatoria intestinal (EII), y se hace esencial en el diagnóstico, monitoreo del tratamiento, y detección y manejo de complicaciones. Materiales y métodos: la Organización Panamericana de Crohn y Colitis (PANCCO) la Sociedad Interamericana de endoscopia (SIED) designó 22 expertos latinoamericanos en EII para desarrollar un estudio de consenso utilizando el método Delphi modificado, basado utilizando la mejor evidencia disponible. Un grupo de trabajo de 22 miembros de 9 países, se identificaron 15 temas y formularon 98 declaraciones, quienes participaron en 2 rondas de votación. Se definió como el acuerdo de ≥80% de los expertos para cada declaración. Resultados: Posterior a la votación de todas las afirmaciones, se obtuvieron 8 afirmaciones que no alcanzaron el 80% de consenso entre los participantes, por lo cual se replantearon las preguntas en el Comité Coordinador del consenso con la participación de los expertos revisores de dichas preguntas y se sometieron de nuevo a votación por todos los expertos en una segunda ronda 7 afirmaciones finales y 1 fue eliminada con consenso. Después de dos rondas de votación, los expertos lograron consenso con revisión de la literatura con la mejor evidencia disponible, se desarrollaron los temas más importantes con la evidencia científica que soporta cada una de las afirmaciones alrededor del tema de endoscopia en EII. Conclusiones: Se desarrollaron declaraciones en consenso y basadas en la mejor evidencia disponible acerca de la endoscopia en enfermedad inflamatoria intestinal.Introduction: Endoscopy plays a fundamental role in inflammatory bowel disease (IBD), and becomes essential in diagnosis, treatment monitoring, and detection and management of complications. Materials and methods: The Pan American Crohn's and Colitis Organization (PANCCO) and the Inter-American Society of Endoscopy (SIED) appointed 22 Latin American experts in IBD to develop a consensus study using the modified Delphi method, based on the best available evidence. A working group of 22 members from 9 countries identified 15 topics and formulated 98 statements, who participated in 2 rounds of voting. It was defined as agreement of ≥80% of experts for each statement. Results: After the voting of all the statements, 8 statements were obtained that did not reach 80% consensus among the participants, so the questions were reconsidered in the Coordinating Committee of the consensus with the participation of the expert reviewers of these questions and 7 final statements were voted again by all the experts in a second round and 1 was eliminated with consensus. After two rounds of voting, the experts reached consensus with literature review with the best available evidence, the most important issues were developed with scientific evidence supporting each of the statements around the topic of endoscopy in IBD. Conclusions: Consensus statements were developed and based on the best available evidence about endoscopy in inflammatory bowel disease
1er. Coloquio de educación para el diseño en la sociedad 5.0
Las memorias del 1er. Coloquio de Educación para el Diseño en la Sociedad 5.0 debenser entendidas como un esfuerzo colectivo de la comunidad de académicos de la División de Ciencias y Artes para el Diseño, que pone de manifiesto los retos y oportunidades que enfrenta la educación en diseño en un contexto de cambio acelerado y rompimiento de paradigmas.El evento se realizó el pasado mes de mayo de 2018 y se recibieron más de 50 ponencias por parte de las profesoras y profesores de la División.Las experiencias y/o propuestas innovadoras en cuanto a procesos de enseñanza y aprendizaje que presentan los autores en cada uno de sus textos son una invitación a reflexionar sobre nuestra situación actual en la materia, y emprender acciones en la División para continuar brindando una educación de calidad en diseño a nuestras alumnas, alumnos y la sociedad.Adicionalmente, se organizaron tres conferencias magistrales sobre la situación actual de la educación en Diseño y de las Instituciones de Educación Superior, impartidas por el Mtro. Luis Sarale, profesor de la Universidad Nacional de Cuyo en Mendoza (Argentina), y Presidente en su momento, de la Red de Carreras de Diseño en Universidades Públicas Latinoamericanas (DISUR), el Dr. Romualdo López Zárate, Rector de la Unidad Azcapotzalco, así como del Mtro. Luis Antonio Rivera Díaz, Jefe de Departamento de Teoría y Procesos del Diseño de la División de la Ciencias de la Comunicación y Diseño, en la Unidad Cuajimalpa de nuestra institución.La publicación de estas memorias son un esfuerzo divisional, organizado desde la Coordinación de Docencia Divisional y la Coordinación de Tecnologías del Aprendizaje, del Conocimiento y la Comunicación, para contribuir a los objetivos planteados en el documento ACCIONES:Agenda CyAD2021, en particular al eje de Innovación Educativa. Es necesario impulsar a todos los niveles de la División espacios de discusión orientados a reflexionar sobre el presente y futuro en la educación del diseñador, que contribuya a mejorar la calidad de la docencia y favorezca al fortalecimiento de los procesos de enseñanza y aprendizaje.Finalmente, extiendo un amplio reconocimiento a todos los miembros de la División que hicieron posible este evento, así como a todos los ponentes y participantes por compartir su conocimiento para que la División sea cada día mejor
XLVIII Coloquio Argentino de Estadística. VI Jornada de Educación Estadística Martha Aliaga Modalidad virtual
Esta publicación es una compilación de las actividades realizadas en el marco del XLVIII Coloquio Argentino de Estadística y la VI Jornada de Educación Estadística Martha Aliaga organizada por la Sociedad Argentina de Estadística y la Facultad de Ciencias Económicas. Se presenta un resumen para cada uno de los talleres, cursos realizados, ponencias y poster presentados. Para los dos últimos se dispone de un hipervínculo que direcciona a la presentación del trabajo. Ellos obedecen a distintas temáticas de la estadística con una sesión especial destinada a la aplicación de modelos y análisis de datos sobre COVID-19.Fil: Saino, Martín. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Stimolo, María Inés. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Ortiz, Pablo. Universidad Nacional de córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Guardiola, Mariana. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Aguirre, Alberto Frank Lázaro. Universidade Federal de Alfenas. Departamento de Estatística. Instituto de Ciências Exatas; Brasil.Fil: Alves Nogueira, Denismar. Universidade Federal de Alfenas. Departamento de Estatística. Instituto de Ciências Exatas; Brasil.Fil: Beijo, Luiz Alberto. Universidade Federal de Alfenas. Departamento de Estatística. Instituto de Ciências Exatas; Brasil.Fil: Solis, Juan Manuel. Universidad Nacional de Jujuy. Centro de Estudios en Bioestadística, Bioinformática y Agromática; Argentina.Fil: Alabar, Fabio. Universidad Nacional de Jujuy. Centro de Estudios en Bioestadística, Bioinformática y Agromática; Argentina.Fil: Ruiz, Sebastián León. Universidad Nacional de Jujuy. Centro de Estudios en Bioestadística, Bioinformática y Agromática; Argentina.Fil: Hurtado, Rafael. Universidad Nacional de Jujuy; Argentina.Fil: Alegría Jiménez, Alfredo. Universidad Técnica Federico Santa María. Departamento de Matemática; Chile.Fil: Emery, Xavier. Universidad de Chile. Departamento de Ingeniería en Minas; Chile.Fil: Emery, Xavier. Universidad de Chile. Advanced Mining Technology Center; Chile.Fil: Álvarez-Vaz, Ramón. Universidad de la República. Instituto de Estadística. Departamento de Métodos Cuantitativos; Uruguay.Fil: Massa, Fernando. Universidad de la República. Instituto de Estadística. Departamento de Métodos Cuantitativos; Uruguay.Fil: Vernazza, Elena. Universidad de la República. Facultad de Ciencias Económicas y de Administración. Instituto de Estadística; Uruguay.Fil: Lezcano, Mikaela. Universidad de la República. Facultad de Ciencias Económicas y de Administración. Instituto de Estadística; Uruguay.Fil: Urruticoechea, Alar. Universidad Católica del Uruguay. Facultad de Ciencias de la Salud. Departamento de Neurocognición; Uruguay.Fil: del Callejo Canal, Diana. Universidad Veracruzana. Instituto de Investigación de Estudios Superiores, Económicos y Sociales; México.Fil: Canal Martínez, Margarita. Universidad Veracruzana. Instituto de Investigación de Estudios Superiores, Económicos y Sociales; México.Fil: Ruggia, Ornela. CONICET; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de desarrollo rural; Argentina.Fil: Tolosa, Leticia Eva. Universidad Nacional de Córdoba; Argentina. Universidad Católica de Córdoba; Argentina.Fil: Rojo, María Paula. Universidad Nacional de Córdoba; Argentina.Fil: Nicolas, María Claudia. Universidad Nacional de Córdoba; Argentina. Universidad Católica de Córdoba; Argentina.Fil: Barbaroy, Tomás. Universidad Nacional de Córdoba; Argentina.Fil: Villarreal, Fernanda. CONICET, Universidad Nacional del Sur. Instituto de Matemática de Bahía Blanca (INMABB); Argentina.Fil: Pisani, María Virginia. Universidad Nacional del Sur. Departamento de Matemática; Argentina.Fil: Quintana, Alicia. Universidad Nacional del Sur. Departamento de Matemática; Argentina.Fil: Elorza, María Eugenia. CONICET. Universidad Nacional del Sur. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina.Fil: Peretti, Gianluca. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Buzzi, Sergio Martín. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Departamento de Estadística y Matemática; Argentina.Fil: Settecase, Eugenia. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadísticas. Instituto de Investigaciones Teóricas y Aplicadas en Estadística; Argentina.Fil: Settecase, Eugenia. Department of Agriculture and Fisheries. Leslie Research Facility; Australia.Fil: Paccapelo, María Valeria. Department of Agriculture and Fisheries. Leslie Research Facility; Australia.Fil: Cuesta, Cristina. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadísticas. Instituto de Investigaciones Teóricas y Aplicadas en Estadística; Argentina.Fil: Saenz, José Luis. Universidad Nacional de la Patagonia Austral; Argentina.Fil: Luna, Silvia. Universidad Nacional de la Patagonia Austral; Argentina.Fil: Paredes, Paula. Universidad Nacional de la Patagonia Austral; Argentina. Instituto Nacional de Tecnología Agropecuaria. Estación Experimental Agropecuaria Santa Cruz; Argentina.Fil: Maglione, Dora. Universidad Nacional de la Patagonia Austral; Argentina.Fil: Rosas, Juan E. Instituto Nacional de Investigación Agropecuaria (INIA); Uruguay.Fil: Pérez de Vida, Fernando. Instituto Nacional de Investigación Agropecuaria (INIA); Uruguay.Fil: Marella, Muzio. Sociedad Anónima Molinos Arroceros Nacionales (SAMAN); Uruguay.Fil: Berberian, Natalia. Universidad de la República. Facultad de Agronomía; Uruguay.Fil: Ponce, Daniela. Universidad Estadual Paulista. Facultad de Medicina; Brasil.Fil: Silveira, Liciana Vaz de A. Universidad Estadual Paulista; Brasil.Fil: Freitas Galletti, Agda Jessica de. Universidad Estadual Paulista; Brasil.Fil: Bellassai, Juan Carlos. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigación y Estudios de Matemáticas (CIEM-Conicet); Argentina.Fil: Pappaterra, María Lucía. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigación y Estudios de Matemáticas (CIEM-Conicet); Argentina.Fil: Ojeda, Silvia María. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.Fil: Ascua, Melina Belén. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Roldán, Dana Agustina. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Rodi, Ayrton Luis. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Ventre, Giuliana. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: González, Agustina. Universidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina.Fil: Palacio, Gabriela. Universidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina.Fil: Bigolin, Sabina. Universidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina.Fil: Ferrero, Susana. Universidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina.Fil: Del Medico, Ana Paula. Universidad Nacional de Rosario. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR); Argentina.Fil: Pratta, Guillermo. Universidad Nacional de Rosario. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR); Argentina.Fil: Tenaglia, Gerardo. Instituto Nacional de Tecnología Agropecuaria. Instituto de Investigación y Desarrollo Tecnológico para la Agricultura Familiar; Argentina.Fil: Lavalle, Andrea. Universidad Nacional del Comahue. Departamento de Estadística; Argentina.Fil: Demaio, Alejo. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Hernández, Paz. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Di Palma, Fabricio. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Calizaya, Pablo. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Avalis, Francisca. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Caro, Norma Patricia. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Caro, Norma Patricia. Universidad Nacional de Córdoba. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Fernícola, Marcela. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina.Fil: Nuñez, Myriam. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina.Fil: Dundray, , Fabián. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina.Fil: Calviño, Amalia. Universidad de Buenos Aires. Instituto de Química y Metabolismo del Fármaco. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Farfán Machaca, Yheni. Universidad Nacional de San Antonio Abad del Cusco. Departamento Académico de Matemáticas y Estadística; Argentina.Fil: Paucar, Guillermo. Universidad Nacional de San Antonio Abad del Cusco. Departamento Académico de Matemáticas y Estadística; Argentina.Fil: Coaquira, Frida. Universidad Nacional de San Antonio Abad del Cusco. Escuela de posgrado UNSAAC; Argentina.Fil: Ferreri, Noemí M. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina.Fil: Pascaner, Melina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina.Fil: Martinez, Facundo. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina.Fil: Bossolasco, María Luisa. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo; Argentina.Fil: Bortolotto, Eugenia B. Universidad Nacional de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina.Fil: Bortolotto, Eugenia B. Universidad Nacional de Rosario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Faviere, Gabriela S. Universidad Nacional de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina.Fil: Faviere, Gabriela S. Universidad Nacional de Rosario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Angelini, Julia. Universidad Nacional de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina.Fil: Angelini, Julia. Universidad Nacional de Rosario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Cervigni, Gerardo. Universidad Nacional de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina.Fil: Cervigni, Gerardo. Universidad Nacional de Rosario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Valentini, Gabriel. Instituto Nacional de Tecnología Agropecuaria. Estación Experimental Agropecuaria INTA San Pedro; Argentina.Fil: Chiapella, Luciana C.. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina.Fil: Chiapella, Luciana C. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina.Fil: Grendas, Leandro. Universidad Buenos Aires. Facultad de Medicina. Instituto de Farmacología; Argentina.Fil: Daray, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina.Fil: Daray, Federico. Universidad Buenos Aires. Facultad de Medicina. Instituto de Farmacología; Argentina.Fil: Leal, Danilo. Universidad Andrés Bello. Facultad de Ingeniería; Chile.Fil: Nicolis, Orietta. Universidad Andrés Bello. Facultad de Ingeniería; Chile.Fil: Bonadies, María Eugenia. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina.Fil: Ponteville, Christiane. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina.Fil: Catalano, Mara. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina.Fil: Catalano, Mara. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina.Fil: Dillon, Justina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina.Fil: Carnevali, Graciela H. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina.Fil: Justo, Claudio Eduardo. Universidad Nacional de la Plata. Facultad de Ingeniería. Departamento de Agrimensura. Grupo de Aplicaciones Matemáticas y Estadísticas (UIDET); Argentina.Fil: Iglesias, Maximiliano. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Instituto de Estadística y Demografía; Argentina.Fil: Gómez, Pablo Sebastián. Universidad Nacional de Córdoba. Facultad de Ciencias Sociales. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Real, Ariel Hernán. Universidad Nacional de Luján. Departamento de Ciencias Básicas; Argentina.Fil: Vargas, Silvia Lorena. Universidad Nacional de Luján. Departamento de Ciencias Básicas; Argentina.Fil: López Calcagno, Yanil. Universidad Nacional de Luján. Departamento de Ciencias Básicas; Argentina.Fil: Batto, Mabel. Universidad Nacional de Luján. Departamento de Ciencias Básicas; Argentina.Fil: Sampaolesi, Edgardo. Universidad Nacional de Luján. Departamento de Ciencias Básicas; Argentina.Fil: Tealdi, Juan Manuel. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Buzzi, Sergio Martín. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Departamento de Estadística y Matemática; Argentina.Fil: García Bazán, Gaspar. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Monroy Caicedo, Xiomara Alejandra. Universidad Nacional de Rosario; Argentina.Fil: Bermúdez Rubio, Dagoberto. Universidad Santo Tomás. Facultad de Estadística; Colombia.Fil: Ricci, Lila. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Centro Marplatense de Investigaciones Matemáticas; Argentina.Fil: Kelmansky, Diana Mabel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina.Fil: Rapelli, Cecilia. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística. Escuela de Estadística. Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística; Argentina.Fil: García, María del Carmen. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística. Escuela de Estadística. Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística; Argentina.Fil: Bussi, Javier. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística. Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística; Argentina.Fil: Méndez, Fernanda. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística. Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística (IITAE); Argentina.Fil: García Mata, Luis Ángel. Universidad Nacional Autónoma de México. Facultad de Estudios Superiores Acatlán; México.Fil: Ramírez González, Marco Antonio. Universidad Nacional Autónoma de México. Facultad de Estudios Superiores Acatlán; México.Fil: Rossi, Laura. Universidad Nacional de Cuyo. Facultad de Ciencias Económicas; Argentina.Fil: Vicente, Gonzalo. Universidad Nacional de Cuyo. Facultad de Ciencias Económicas; Argentina. Universidad Pública de Navarra. Departamento de Estadística, Informática y Matemáticas; España.Fil: Scavino, Marco. Universidad de la República. Facultad de Ciencias Económicas y de Administración. Instituto de Estadística; Uruguay.Fil: Estragó, Virginia. Presidencia de la República. Comisión Honoraria para la Salud Cardiovascular; Uruguay.Fil: Muñoz, Matías. Presidencia de la República. Comisión Honoraria para la Salud Cardiovascular; Uruguay.Fil: Castrillejo, Andrés. Universidad de la República. Facultad de Ciencias Económicas y de Administración. Instituto de Estadística; Uruguay.Fil: Da Rocha, Naila Camila. Universidade Estadual Paulista Júlio de Mesquita Filho- UNESP. Departamento de Bioestadística; BrasilFil: Macola Pacheco Barbosa, Abner. Universidade Estadual Paulista Júlio de Mesquita Filho- UNESP; Brasil.Fil: Corrente, José Eduardo. Universidade Estadual Paulista Júlio de Mesquita Filho – UNESP. Instituto de Biociencias. Departamento de Bioestadística; Brasil.Fil: Spataro, Javier. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Departamento de Economía; Argentina.Fil: Salvatierra, Luca Mauricio. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Nahas, Estefanía. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Márquez, Viviana. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Boggio, Gabriela. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística. Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística; Argentina.Fil: Arnesi, Nora. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística. Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística; Argentina.Fil: Harvey, Guillermina. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística. Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística; Argentina.Fil: Settecase, Eugenia. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística. Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística; Argentina.Fil: Wojdyla, Daniel. Duke University. Duke Clinical Research Institute; Estados Unidos.Fil: Blasco, Manuel. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Instituto de Economía y Finanzas; Argentina.Fil: Stanecka, Nancy. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Instituto de Estadística y Demografía; Argentina.Fil: Caro, Valentina. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Instituto de Estadística y Demografía; Argentina.Fil: Sigal, Facundo. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Economía; Argentina.Fil: Blacona, María Teresa. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística. Escuela de Estadística; Argentina.Fil: Rodriguez, Norberto Vicente. Universidad Nacional de Tres de Febrero; Argentina.Fil: Loiacono, Karina Valeria. Universidad Nacional de Tres de Febrero; Argentina.Fil: García, Gregorio. Instituto Nacional de Estadística y Censos. Dirección Nacional de Metodología Estadística; Argentina.Fil: Ciardullo, Emanuel. Instituto Nacional de Estadística y Censos. Dirección Nacional de Metodología Estadística; Argentina.Fil: Ciardullo, Emanuel. Instituto Nacional de Estadística y Censos. Dirección Nacional de Metodología Estadística; Argentina.Fil: Funkner, Sofía. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; Argentina.Fil: Dieser, María Paula. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; Argentina.Fil: Martín, María Cristina. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; Argentina.Fil: Martín, María Cristina. Universidad Nacional del Sur. Departamento de Matemática; Argentina.Fil: Peitton, Lucas. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística; Argentina. Queensland Department of Agriculture and Fisheries; Australia.Fil: Borgognone, María Gabriela. Queensland Department of Agriculture and Fisheries; Australia.Fil: Terreno, Dante D. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Departamento de Contabilidad; Argentina.Fil: Castro González, Enrique L. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Departamento de Contabilidad; Argentina.Fil: Roldán, Janina Micaela. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; Argentina.Fil: González, Gisela Paula. CONICET. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina. Universidad Nacional del Sur; Argentina.Fil: De Santis, Mariana. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Geri, Milva. CONICET. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina.Fil: Geri, Milva. Universidad Nacional del Sur. Departamento de Economía; Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina.Fil: Marfia, Martín. Universidad Nacional de la Plata. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina.Fil: Kudraszow, Nadia L. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Centro de Matemática de La Plata; Argentina.Fil: Closas, Humberto. Universidad Tecnológica Nacional; Argentina.Fil: Amarilla, Mariela. Universidad Tecnológica Nacional; Argentina.Fil: Jovanovich, Carina. Universidad Tecnológica Nacional; Argentina.Fil: de Castro, Idalia. Universidad Nacional del Nordeste; Argentina.Fil: Franchini, Noelia. Universidad Nacional del Nordeste; Argentina.Fil: Cruz, Rosa. Universidad Nacional del Nordeste; Argentina.Fil: Dusicka, Alicia. Universidad Nacional del Nordeste; Argentina.Fil: Quaglino, Marta. Universidad Nacional de Rosario; Argentina.Fil: Kalauz, Roberto José Andrés. Investigador Independiente; Argentina.Fil: González, Mariana Verónica. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Departamento de Estadística y Matemáticas; Argentina.Fil: Lescano, Maira Celeste.
Taking the pulse of Earth's tropical forests using networks of highly distributed plots
Tropical forests are the most diverse and productive ecosystems on Earth. While better understanding of these forests is critical for our collective future, until quite recently efforts to measure and monitor them have been largely disconnected. Networking is essential to discover the answers to questions that transcend borders and the horizons of funding agencies. Here we show how a global community is responding to the challenges of tropical ecosystem research with diverse teams measuring forests tree-by-tree in thousands of long-term plots. We review the major scientific discoveries of this work and show how this process is changing tropical forest science. Our core approach involves linking long-term grassroots initiatives with standardized protocols and data management to generate robust scaled-up results. By connecting tropical researchers and elevating their status, our Social Research Network model recognises the key role of the data originator in scientific discovery. Conceived in 1999 with RAINFOR (South America), our permanent plot networks have been adapted to Africa (AfriTRON) and Southeast Asia (T-FORCES) and widely emulated worldwide. Now these multiple initiatives are integrated via ForestPlots.net cyber-infrastructure, linking colleagues from 54 countries across 24 plot networks. Collectively these are transforming understanding of tropical forests and their biospheric role. Together we have discovered how, where and why forest carbon and biodiversity are responding to climate change, and how they feedback on it. This long-term pan-tropical collaboration has revealed a large long-term carbon sink and its trends, as well as making clear which drivers are most important, which forest processes are affected, where they are changing, what the lags are, and the likely future responses of tropical forests as the climate continues to change. By leveraging a remarkably old technology, plot networks are sparking a very modern revolution in tropical forest science. In the future, humanity can benefit greatly by nurturing the grassroots communities now collectively capable of generating unique, long-term understanding of Earth's most precious forests.
Resumen
Los bosques tropicales son los ecosistemas más diversos y productivos del mundo y entender su funcionamiento es crítico para nuestro futuro colectivo. Sin embargo, hasta hace muy poco, los esfuerzos para medirlos y monitorearlos han estado muy desconectados. El trabajo en redes es esencial para descubrir las respuestas a preguntas que trascienden las fronteras y los plazos de las agencias de financiamiento. Aquí mostramos cómo una comunidad global está respondiendo a los desafíos de la investigación en ecosistemas tropicales a través de diversos equipos realizando mediciones árbol por árbol en miles de parcelas permanentes de largo plazo. Revisamos los descubrimientos más importantes de este trabajo y discutimos cómo este proceso está cambiando la ciencia relacionada a los bosques tropicales. El enfoque central de nuestro esfuerzo implica la conexión de iniciativas locales de largo plazo con protocolos estandarizados y manejo de datos para producir resultados que se puedan trasladar a múltiples escalas. Conectando investigadores tropicales, elevando su posición y estatus, nuestro modelo de Red Social de Investigación reconoce el rol fundamental que tienen, para el descubrimiento científico, quienes generan o producen los datos. Concebida en 1999 con RAINFOR (Suramérica), nuestras redes de parcelas permanentes han sido adaptadas en África (AfriTRON) y el sureste asiático (T-FORCES) y ampliamente replicadas en el mundo. Actualmente todas estas iniciativas están integradas a través de la ciber-infraestructura de ForestPlots.net, conectando colegas de 54 países en 24 redes diferentes de parcelas. Colectivamente, estas redes están transformando nuestro conocimiento sobre los bosques tropicales y el rol de éstos en la biósfera. Juntos hemos descubierto cómo, dónde y porqué el carbono y la biodiversidad de los bosques tropicales está respondiendo al cambio climático y cómo se retroalimentan. Esta colaboración pan-tropical de largo plazo ha expuesto un gran sumidero de carbono y sus tendencias, mostrando claramente cuáles son los factores más importantes, qué procesos se ven afectados, dónde ocurren los cambios, los tiempos de reacción y las probables respuestas futuras mientras el clima continúa cambiando. Apalancando lo que realmente es una tecnología antigua, las redes de parcelas están generando una verdadera y moderna revolución en la ciencia tropical. En el futuro, la humanidad puede beneficiarse enormemente si se nutren y cultivan comunidades de investigadores de base, actualmente con la capacidad de generar información única y de largo plazo para entender los que probablemente son los bosques más preciados de la tierra.
Resumo
Florestas tropicais são os ecossistemas mais diversos e produtivos da Terra. Embora uma boa compreensão destas florestas seja crucial para o nosso futuro coletivo, até muito recentemente os esforços de medições e monitoramento foram amplamente desconexos. É essencial formarmos redes para obtermos respostas que transcendem fronteiras e horizontes de agências financiadoras. Neste estudo nós mostramos como uma comunidade global está respondendo aos desafios da pesquisa de ecossistemas tropicais, com equipes diversas medindo florestas, árvore por árvore, em milhares de parcelas monitoradas à longo prazo. Nós revisamos as maiores descobertas científicas deste trabalho, e mostramos também como este processo está mudando a ciência de florestas tropicais. Nossa abordagem principal envolve unir iniciativas de base a protocolos padronizados e gerenciamento de dados a fim de gerar resultados robustos em escalas ampliadas. Ao conectar pesquisadores tropicais e elevar seus status, nosso modelo de Rede de Pesquisa Social reconhece o papel-chave do produtor dos dados na descoberta científica. Concebida em 1999 com o RAINFOR (América do Sul), nossa rede de parcelas permanentes foi adaptada para África (AfriTRON) e Sudeste asiático (T-FORCES), e tem sido extensamente reproduzida em todo o mundo. Agora estas múltiplas iniciativas estão integradas através de uma infraestrutura cibernética do ForestPlots.net, conectando colegas de 54 países de 24 redes de parcelas. Estas iniciativas estão transformando coletivamente o entendimento das florestas tropicais e seus papéis na biosfera. Juntos nós descobrimos como, onde e por que o carbono e a biodiversidade da floresta estão respondendo às mudanças climáticas, e seus efeitos de retroalimentação. Esta duradoura colaboração pantropical revelou um grande sumidouro de carbono persistente e suas tendências, assim como tem evidenciado quais direcionadores são mais importantes, quais processos florestais são mais afetados, onde eles estão mudando, seus atrasos no tempo de resposta, e as prováveis respostas das florestas tropicais conforme o clima continua a mudar. Dessa forma, aproveitando uma notável tecnologia antiga, redes de parcelas acendem faíscas de uma moderna revolução na ciência das florestas tropicais. No futuro a humanidade pode se beneficiar incentivando estas comunidades basais que agora são coletivamente capazes de gerar conhecimentos únicos e duradouros sobre as florestas mais preciosas da Terra.
Résume
Les forêts tropicales sont les écosystèmes les plus diversifiés et les plus productifs de la planète. Si une meilleure compréhension de ces forêts est essentielle pour notre avenir collectif, jusqu'à tout récemment, les efforts déployés pour les mesurer et les surveiller ont été largement déconnectés. La mise en réseau est essentielle pour découvrir les réponses à des questions qui dépassent les frontières et les horizons des organismes de financement. Nous montrons ici comment une communauté mondiale relève les défis de la recherche sur les écosystèmes tropicaux avec diverses équipes qui mesurent les forêts arbre après arbre dans de milliers de parcelles permanentes. Nous passons en revue les principales découvertes scientifiques de ces travaux et montrons comment ce processus modifie la science des forêts tropicales. Notre approche principale consiste à relier les initiatives de base à long terme à des protocoles standardisés et une gestion de données afin de générer des résultats solides à grande échelle. En reliant les chercheurs tropicaux et en élevant leur statut, notre modèle de réseau de recherche sociale reconnaît le rôle clé de l'auteur des données dans la découverte scientifique. Conçus en 1999 avec RAINFOR (Amérique du Sud), nos réseaux de parcelles permanentes ont été adaptés à l'Afrique (AfriTRON) et à l'Asie du Sud-Est (T-FORCES) et largement imités dans le monde entier. Ces multiples initiatives sont désormais intégrées via l'infrastructure ForestPlots.net, qui relie des collègues de 54 pays à travers 24 réseaux de parcelles. Ensemble, elles transforment la compréhension des forêts tropicales et de leur rôle biosphérique. Ensemble, nous avons découvert comment, où et pourquoi le carbone forestier et la biodiversité réagissent au changement climatique, et comment ils y réagissent. Cette collaboration pan-tropicale à long terme a révélé un important puits de carbone à long terme et ses tendances, tout en mettant en évidence les facteurs les plus importants, les processus forestiers qui sont affectés, les endroits où ils changent, les décalages et les réactions futures probables des forêts tropicales à mesure que le climat continue de changer. En tirant parti d'une technologie remarquablement ancienne, les réseaux de parcelles déclenchent une révolution très moderne dans la science des forêts tropicales. À l'avenir, l'humanité pourra grandement bénéficier du soutien des communautés de base qui sont maintenant collectivement capables de générer une compréhension unique et à long terme des forêts les plus précieuses de la Terre.
Abstrak
Hutan tropika adalah di antara ekosistem yang paling produktif dan mempunyai kepelbagaian biodiversiti yang tinggi di seluruh dunia. Walaupun pemahaman mengenai hutan tropika amat penting untuk masa depan kita, usaha-usaha untuk mengkaji dan mengawas hutah-hutan tersebut baru sekarang menjadi lebih diperhubungkan. Perangkaian adalah sangat penting untuk mencari jawapan kepada soalan-soalan yang menjangkaui sempadan dan batasan agensi pendanaan. Di sini kami menunjukkan bagaimana sebuah komuniti global bertindak balas terhadap cabaran penyelidikan ekosistem tropika melalui penglibatan pelbagai kumpulan yang mengukur hutan secara pokok demi pokok dalam beribu-ribu plot jangka panjang. Kami meninjau semula penemuan saintifik utama daripada kerja ini dan menunjukkan bagaimana proses ini sedang mengubah bidang sains hutan tropika. Teras pendekatan kami memberi tumpuan terhadap penghubungan inisiatif akar umbi jangka panjang dengan protokol standar serta pengurusan data untuk mendapatkan hasil skala besar yang kukuh. Dengan menghubungkan penyelidik-penyelidik tropika dan meningkatkan status mereka, model Rangkaian Penyelidikan Sosial kami mengiktiraf kepentingan peranan pengasas data dalam penemuan saintifik. Bermula dengan pengasasan RAINFOR (Amerika Selatan) pada tahun 1999, rangkaian-rangkaian plot kekal kami kemudian disesuaikan untuk Afrika (AfriTRON) dan Asia Tenggara (T-FORCES) dan selanjutnya telah banyak dicontohi di seluruh dunia. Kini, inisiatif-inisiatif tersebut disepadukan melalui infrastruktur siber ForestPlots.net yang menghubungkan rakan sekerja dari 54 negara di 24 buah rangkaian plot. Secara kolektif, rangkaian ini sedang mengubah pemahaman tentang hutan tropika dan peranannya dalam biosfera. Kami telah bekerjasama untuk menemukan bagaimana, di mana dan mengapa karbon serta biodiversiti hutan bertindak balas terhadap perubahan iklim dan juga bagaimana mereka saling bermaklum balas. Kolaborasi pan-tropika jangka panjang ini telah mendedahkan sebuah sinki karbon jangka panjang serta arah alirannya dan juga menjelaskan pemandu-pemandu perubahan yang terpenting, di mana dan bagaimana proses hutan terjejas, masa susul yang ada dan kemungkinan tindakbalas hutan tropika pada perubahan iklim secara berterusan di masa depan. Dengan memanfaatkan pendekatan lama, rangkaian plot sedang menyalakan revolusi yang amat moden dalam sains hutan tropika. Pada masa akan datang, manusia sejagat akan banyak mendapat manfaat jika memupuk komuniti-komuniti akar umbi yang kini berkemampuan secara kolektif menghasilkan pemahaman unik dan jangka panjang mengenai hutan-hutan yang paling berharga di dunia
Recommended from our members
Computational analyses of non-canonical architectural and structural features associated with alternative splicing
Splicing of nuclear introns is catalysed by the spliceosome, one of the most complex macromolecular machines currently known. Even though the canonical splicing signals that drive the precise recognition of splice sites are well-characterised, recent advances in transcriptome profiling technologies and computational method development have enabled widespread identification of non-canonical splicing features. Non-canonical splicing is highly associated with dynamic splicing regulation, and occurs most prevalently in neuronal tissues. In this present work, I have investigated two types of non-canonical features that are related to atypical exon-intron structures and DNA/RNA conformations.
First, I studied a group of extremely small exons, known as microexons (≤30 nucleotides), which were shown to be part of an evolutionarily conserved network of neuronal alternative splicing events that play essential roles in neuronal development. Since standard RNA-seq tools cannot efficiently detect microexon splice sites, I developed MicroExonator, a novel pipeline for reproducible de novo discovery and quantification of microexons. As a proof of principle, I analysed microexon alternative inclusion patterns across 289 RNA-seq samples coming from eighteen different tissues across a wide range of mouse embryonic and adult stages. I detected 2,938 microexons, 343 of which are differentially spliced throughout mouse embryonic development, including 35 that are not present in mouse transcript annotation databases. Unsupervised clustering of microexons alone segregates brain tissues by developmental time and further analysis suggest a key function for microexon inclusion in axon growth and synapse formation. Moreover, I developed a module to adapt MicroExonator splicing analysis to single-cell RNA-seq samples that I used to analyse data from the mouse visual cortex. As a result, I found 39 microexons that are differentially included between glutamatergic and gabaergic neurons, fifteen of which are found in genes that encode synaptic proteins.
The second type of non-canonical features that I studied are sequences associated with non-B DNA structures and possibly atypical RNA conformations. I analysed the enrichment of different non-B DNA motifs across splice site sequences. The strongest and most consistent enrichments were found for G-quadruplex motifs, which are enriched ~3-fold both upstream and downstream of splice junctions. Further analysis of G4-seq experiments corroborated the enriched motifs detected at splice sites leads to in-vitro G-quadruplex formation. Moreover, enrichment analyses of G-quadruplex motifs and G4-seq experiments across multiple species suggest that the association of G-quadruples to splice sites is a property restricted to mammals and birds. Interestingly, I found stronger enrichment of G-quadruplexes associated with weak splice sites, suggesting that they could function as cis-regulatory elements of alternative splicing events.
Finally, to explore if microexons and exons flanked by intronic G-quadruplexes were involved in dynamic splicing changes, I analyse alternative splicing events induced by depolarisation treatments in human and mouse neurons. I found a widespread cassette exon skipping response after neuronal depolarization, which was particularly enriched in microexons and exons flanked by G-quadruplexes motifs. Taken together, these results suggest that non-canonical splicing features are an important regulatory mechanism of alternative splicing. Further characterisation of non-canonical splicing might provide a better understanding of fine-tuned alternative splicing mechanisms, in particular in the context of neuronal development and heterogeneity
- …
