26 research outputs found

    Trypanosoma cruzi in the chicken model : Chagas-like heart disease in the absence of parasitism

    Get PDF
    Background: The administration of anti-trypanosome nitroderivatives curtails Trypanosoma cruzi infection in Chagas disease patients, but does not prevent destructive lesions in the heart. This observation suggests that an effective treatment for the disease requires understanding its pathogenesis. Methodology/Principal Findings: To understand the origin of clinical manifestations of the heart disease we used a chicken model system in which infection can be initiated in the egg, but parasite persistence is precluded. T. cruzi inoculation into the air chamber of embryonated chicken eggs generated chicks that retained only the parasite mitochondrial kinetoplast DNA minicircle in their genome after eight days of gestation. Crossbreeding showed that minicircles were transferred vertically via the germ line to chicken progeny. Minicircle integration in coding regions was shown by targeted-primer thermal asymmetric interlaced PCR, and detected by direct genomic analysis. The kDNA-mutated chickens died with arrhythmias, shortness of breath, cyanosis and heart failure. These chickens with cardiomyopathy had rupture of the dystrophin and other genes that regulate cell growth and differentiation. Tissue pathology revealed inflammatory dilated cardiomegaly whereby immune system mononuclear cells lyse parasite-free target heart fibers. The heart cell destruction implicated a thymus-dependent, autoimmune; self-tissue rejection carried out by CD45+, CD8cd+, and CD8a lymphocytes. Conclusions/Significance: These results suggest that genetic alterations resulting from kDNA integration in the host genome lead to autoimmune-mediated destruction of heart tissue in the absence of T. cruzi parasites

    Quality of life in liver transplant recipients and the influence of sociodemographic factors

    Get PDF
    Abstract OBJECTIVE To verify the influence of sociodemographic factors on the quality of life of patients after liver transplant. METHOD Cross-sectional study with 150 patients who underwent liver transplant at a referral center. A sociodemographic instrument and the Liver Disease Quality of Life questionnaire were applied. The analysis of variance (ANOVA) was performed, as well as multiple comparisons by the Tukey test and Games-Howell tests when p <0.05. RESULTS Old age had influence on domains of symptoms of liver disease (p = 0.049), sleep (p = 0.023) and sexual function (p = 0.03). Men showed better significant mean values than women for the loneliness dimension (p = 0.037). Patients with higher educational level had higher values for the domain of stigma of liver disease (p = 0.014). There was interference of income in the domains of quality of social interaction (p = 0.033) and stigma of the disease (p = 0.046). CONCLUSION In half of the quality of life domains, there was influence of some sociodemographic variable

    Sexual transmission of American trypanosomiasis in humans : a new potential pandemic route for Chagas parasites

    Get PDF
    Background: the Trypanosoma cruzi infection endemic in Latin America has now spread to several countries across four continents; this endemic involves triatomine vector-free protists. We hypothesised that the sexual transmission of T. cruzi contributes to the ongoing spread of Chagas disease. Objectives: a short-term longitudinal study was conducted to evaluate this hypothesis. Methods: the study population comprised 109 subjects from four families, among whom 21 had been diagnosed with acute Chagas disease by direct parasitological analysis. Blood mononuclear cells and serum samples were obtained from each study subject once per year for three consecutive years. Enzyme-linked immunosorbent assay (ELISA) and indirect immunofluorescence serological examinations were used to detect specific T. cruzi antibodies. Polymerase chain reaction of T. cruzi DNA revealed 188-nucleotide bands, which hybridised to a specific radiolabelled probe and were confirmed by cloning and sequencing. Results: three independent assessments at different time points revealed T. cruzi nuclear DNA footprints in 76% (83/109) of the study population with active infection. In contrast, the ELISA and indirect immunofluorescence assays detected the T. cruzi antibody in 28.4% (31/109) of the study samples. Moreover, the semen from 82.6% (19/23) of subjects people revealed harboured the 188- bp base pair T. cruzi footprint. Interestingly, the ejaculates of nuclear DNA-positive Chagas patient transmitted the T. cruzi upon peritoneal injection or infusion in the vagina of mice, and amastigotes were detected in the skeletal muscle, myocardium, vas deferens, and uterine tube. Main conclusions: T. cruzi infections can be transmitted from females or males to naïve mates through intercourse, and progeny showed discrepancies between the ratios of nuclear DNA footprints and specific antibody that can be explained by the tolerance attained during early embryo growth. Additional studies are needed to develop drugs to eradicate the infections. Additionally, the importance of a vigorous education, information, and communication program to prevent sexually transmitted Chagas disease in humans cannot be underemphasised

    Chagas disease

    No full text
    Chagas disease is the clinical condition triggered by infection with the protozoan Trypanosoma cruzi. The infection is transmitted by triatomine insects while blood feeding on a human host. Field studies predict that one third of an estimated 18 million T cruzi‐infected humans in Latin America will die of Chagas disease. Acute infections are usually asymptomatic, but the ensuing chronic T cruzi infections have been associated with high ratios of morbidity and mortality: Chagas heart disease leads to unexpected death in 37.5% of patients, 58% develop heart failure and die and megacolon or megaoesophagus has been associated with death in 4.5%. The pathogenesis of Chagas disease appears to be related to a parasite‐induced mutation of the vertebrate genome. Currently, treatment is unsatisfactory

    Trypanosoma cruzi in the Chicken Model: Chagas-Like Heart Disease in the Absence of Parasitism

    No full text
    Background: The administration of anti-trypanosome nitroderivatives curtails Trypanosoma cruzi infection in Chagas disease patients, but does not prevent destructive lesions in the heart. This observation suggests that an effective treatment for the disease requires understanding its pathogenesis. Methodology/Principal Findings: To understand the origin of clinical manifestations of the heart disease we used a chicken model system in which infection can be initiated in the egg, but parasite persistence is precluded. T. cruzi inoculation into the air chamber of embryonated chicken eggs generated chicks that retained only the parasite mitochondrial kinetoplast DNA minicircle in their genome after eight days of gestation. Crossbreeding showed that minicircles were transferred vertically via the germ line to chicken progeny. Minicircle integration in coding regions was shown by targeted-primer thermal asymmetric interlaced PCR, and detected by direct genomic analysis. The kDNA-mutated chickens died with arrhythmias, shortness of breath, cyanosis and heart failure. These chickens with cardiomyopathy had rupture of the dystrophin and other genes that regulate cell growth and differentiation. Tissue pathology revealed inflammatory dilated cardiomegaly whereby immune system mononuclear cells lyse parasite-free target heart fibers. The heart cell destruction implicated a thymus-dependent, autoimmune; self-tissue rejection carried out by CD45+ , CD8cd+ , and CD8a lymphocytes. Conclusions/Significance: These results suggest that genetic alterations resulting from kDNA integration in the host genome lead to autoimmune-mediated destruction of heart tissue in the absence of T. cruzi parasites.The authors thank Nancy R Sturm for helpful discussions and comments on the manuscript. We are indebted to Prof. Dusand Kordis for donation of the XeCrs primer sets used.https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.000100

    Inhibition of Autoimmune Chagas-Like Heart Disease by Bone Marrow Transplantation

    No full text
    BACKGROUND:Infection with the protozoan Trypanosoma cruzi manifests in mammals as Chagas heart disease. The treatment available for chagasic cardiomyopathy is unsatisfactory. METHODS/PRINCIPAL FINDINGS:To study the disease pathology and its inhibition, we employed a syngeneic chicken model refractory to T. cruzi in which chickens hatched from T. cruzi inoculated eggs retained parasite kDNA (1.4 kb) minicircles. Southern blotting with EcoRI genomic DNA digests revealed main 18 and 20 kb bands by hybridization with a radiolabeled minicircle sequence. Breeding these chickens generated kDNA-mutated F1, F2, and F3 progeny. A targeted-primer TAIL-PCR (tpTAIL-PCR) technique was employed to detect the kDNA integrations. Histocompatible reporter heart grafts were used to detect ongoing inflammatory cardiomyopathy in kDNA-mutated chickens. Fluorochromes were used to label bone marrow CD3+, CD28+, and CD45+ precursors of the thymus-dependent CD8α+ and CD8β+ effector cells that expressed TCRγδ, vβ1 and vβ2 receptors, which infiltrated the adult hearts and the reporter heart grafts. CONCLUSIONS/SIGNIFICANCE:Genome modifications in kDNA-mutated chickens can be associated with disruption of immune tolerance to compatible heart grafts and with rejection of the adult host's heart and reporter graft, as well as tissue destruction by effector lymphocytes. Autoimmune heart rejection was largely observed in chickens with kDNA mutations in retrotransposons and in coding genes with roles in cell structure, metabolism, growth, and differentiation. Moreover, killing the sick kDNA-mutated bone marrow cells with cytostatic and anti-folate drugs and transplanting healthy marrow cells inhibited heart rejection. We report here for the first time that healthy bone marrow cells inhibited heart pathology in kDNA+ chickens and thus prevented the genetically driven clinical manifestations of the disease

    Inhibition of Autoimmune Chagas-Like Heart Disease by Bone Marrow Transplantation

    No full text
    Background: Infection with the protozoan Trypanosoma cruzi manifests in mammals as Chagas heart disease. The treatment available for chagasic cardiomyopathy is unsatisfactory. Methods/Principal Findings: To study the disease pathology and its inhibition, we employed a syngeneic chicken model refractory to T. cruzi in which chickens hatched from T. cruzi inoculated eggs retained parasite kDNA (1.4 kb) minicircles. Southern blotting with EcoRI genomic DNA digests revealed main 18 and 20 kb bands by hybridization with a radiolabeled minicircle sequence. Breeding these chickens generated kDNA-mutated F1, F2, and F3 progeny. A targeted-primer TAIL-PCR (tpTAIL-PCR) technique was employed to detect the kDNA integrations. Histocompatible reporter heart grafts were used to detect ongoing inflammatory cardiomyopathy in kDNA-mutated chickens. Fluorochromes were used to label bone marrow CD3+ , CD28+ , and CD45+ precursors of the thymus-dependent CD8a+ and CD8b+ effector cells that expressed TCRcd, vb1 and vb2 receptors, which infiltrated the adult hearts and the reporter heart grafts. Conclusions/Significance: Genome modifications in kDNA-mutated chickens can be associated with disruption of immune tolerance to compatible heart grafts and with rejection of the adult host’s heart and reporter graft, as well as tissue destruction by effector lymphocytes. Autoimmune heart rejection was largely observed in chickens with kDNA mutations in retrotransposons and in coding genes with roles in cell structure, metabolism, growth, and differentiation. Moreover, killing the sick kDNA-mutated bone marrow cells with cytostatic and anti-folate drugs and transplanting healthy marrow cells inhibited heart rejection. We report here for the first time that healthy bone marrow cells inhibited heart pathology in kDNA+ chickens and thus prevented the genetically driven clinical manifestations of the disease.We thank the Czech Academy of Sciences for its donation of fertile congenic chicken eggs. We are grateful to Milena Wilhemova´ for the flocks’ care, and to Herick S. Muller and Maria da Gloria da Silva for technical assistance.https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.000338
    corecore