517 research outputs found

    Influence of High Voltage Electrostatic Field (HVEF) on Vigour of Aged Rice (Oryza sativa L.) Seeds

    Get PDF
    The vigour restoration of aged rice seeds is of great significance in agriculture. This paper studied the biological effects of high voltage electrostatic field (HVEF) on aged rice seeds, including dry seeds and wet seeds soaked in sterile deionized water for 24 hours. The results showed that HVEF slightly affected the vigour of the aged dry rice seeds while the seed vigour and seedling growth of the aged wet rice seeds were significantly improved. The germination rate and germination potentiality also showed moderate improvement after exposure to HVEF with electric intensity less than t 450 kV•m-1. Compared to control, the vigour index of aged wet rice seeds was increased 31.96%. No significant effects of HVEF on dry aged rice seeds were found

    Shear Stress and Oxidized LDL Regulates Endothelial Cell Tube Formation through VEGF Signaling

    Get PDF
    Shear stress and oxidized low-density lipoprotein (oxLDL) caused by abnormal blood is critical to angiogenesis for atherosclerosis. However, the mechanism in shear stress or ox-LDL regulated angiogenesis is still not well understood. There is the hypothesis that shear stress or oxLDL regulates angiogenesis through the vascular endothelial growth factor (VEGF) signaling pathway. It is discovered that both high shear stress and low concentration of oxLDL contribute to angiogenesis, which is inhibited once the VEGF or VEGFR expression is knocked down. The expression of p-FAK and p-paxillin is regulated by the VEGF/VEGFR signal axis. VEGFR2, p-FAK, p-paxillin and VEGFR1 are VEGF-responsive proteins, and they are also upregulated by high shear stress and low concentration of oxLDL. If the VEGF or VEGFR2 is knocked down, phosphorylation of FAK and paxillin induced by high shear stress and low concentration of oxLDL are also significantly inhibited. In summary, present studies have demonstrated that high shear stress and low concentration of oxLDL induces angiogenesis through the VEGFR2/FAK/paxillin signaling pathway

    Effects of Simulated Microgravity on Vascular Development in Zebrafish

    Get PDF
    Research in microgravity is of utmost importance for disclosing the impact of gravity on biological processes and organisms. With the development of space technology, scientists pay more attention to cardiovascular diseases associated with microgravity. However, up to date only sparse data exist on microgravity and cardiovascular development mechanisms. In this study, zebrafish was chosen as the model organism. Zebrafish embryos were exposed to microgravity using a ground-based simulation microgravity (SM) bioreactor. The effects of SM on the development of early embryonic vascular system were studied in vivo in real-time. Zebrafish embryos were selected and divided into two groups at 12 hpf. One group was cultured in the MG-IIA bioreactor whereas the control group was cultured under normal gravity conditions. SM did not affect the number of live zebrafish and there were nonspecific developmental phenotypes in two groups. The heart rate in SM zebrafish embryos was significantly decreased. Then the vascular development differences between two groups were analyzed by qPCR and whole mount in situ hybridization. The effect of SM on zebrafish vascular development was not evident at 12 hpf - 24 hpf stage, but it had significant influences at 24 hpf-36 hpf stage.We also found that nos2b expression was up-regulated in the SM group both at 24 hpf and 36 hpf, interesting, all nos2b expression was observed in the hypothalamus at 24 hpf, it was no difference in the hypothalamus but significantly increased in the dorsal near the vascular at 36 hpf. These data suggested that the effect of SM on vasculogenesis stage is not obvious, but it has significant influences on angiogenesis, which maybe has relationship with the expression of nos2b

    The 5th International Conference on Biomedical Engineering and Biotechnology (ICBEB 2016)

    Get PDF

    Biomimetic nanotherapies: red blood cell based core-shell structured nanocomplexes for atherosclerosis management

    Get PDF
    Cardiovascular disease is the leading cause of mortality worldwide. Atherosclerosis, one of the most common forms of the disease, is characterized by a gradual formation of atherosclerotic plaque, hardening, and narrowing of the arteries. Nanomaterials can serve as powerful delivery platforms for atherosclerosis treatment. However, their therapeutic efficacy is substantially limited in vivo due to nonspecific clearance by the mononuclear phagocytic system. In order to address this limitation, rapamycin (RAP)‐loaded poly(lactic‐co‐glycolic acid) (PLGA) nanoparticles are cloaked with the cell membrane of red blood cells (RBCs), creating superior nanocomplexes with a highly complex functionalized bio‐interface. The resulting biomimetic nanocomplexes exhibit a well‐defined “core–shell” structure with favorable hydrodynamic size and negative surface charge. More importantly, the biomimetic nature of the RBC interface results in less macrophage‐mediated phagocytosis in the blood and enhanced accumulation of nanoparticles in the established atherosclerotic plaques, thereby achieving targeted drug release. The biomimetic nanocomplexes significantly attenuate the progression of atherosclerosis. Additionally, the biomimetic nanotherapy approach also displays favorable safety properties. Overall, this study demonstrates the therapeutic advantages of biomimetic nanotherapy for atherosclerosis treatment, which holds considerable promise as a new generation of drug delivery system for safe and efficient management of atherosclerosis

    Machine-Learning-Derived Nomogram Based on 3D Radiomic Features and Clinical Factors Predicts Progression-Free Survival in Lung Adenocarcinoma

    Get PDF
    Background: To establish a machine-learning-derived nomogram based on radiomic features and clinical factors to predict post-surgical 2-year progression-free survival (PFS) in patients with lung adenocarcinoma.Methods: Patients with &gt;2 years post-surgical prognosis results of lung adenocarcinoma were included in Hospital-1 for model training (n = 100) and internal validation (n = 50), and in Hospital-2 for external testing (n = 50). A total of 1,672 radiomic features were extracted from 3D segmented CT images. The Rad-score was established using random survival forest by accumulating and weighting the top-20 imaging features contributive to PFS. A nomogram for predicting PFS was established, which comprised the Rad-score and clinical factors highly relevant to PFS.Results: In the training, internal validation, and external test groups, 69/100 (69%), 37/50 (74%) and 36/50 (72%) patients were progression-free at two years, respectively. According to the Rad-score, the integral of area under the curve (iAUC) for discriminating high and low risk of progression was 0.92 (95%CI: 0.77-1.0), 0.70 (0.41-0.98) and 0.90 (0.65-1.0), respectively. The C-index of Rad-score was 0.781 and 0.860 in the training and external test groups, higher than 0.707 and 0.606 for TNM stage, respectively. The nomogram integrating Rad-score and clinical factors (lung nodule type, cM stage and histological type) achieved a C-index of 0.845 and 0.837 to predict 2-year PFS, respectively, significantly higher than by only radiomic features (all p &lt; 0.01).Conclusion: The nomogram comprising CT-derived radiomic features and risk factors showed a high performance in predicting post-surgical 2-year PFS of patients with lung adenocarcinoma, which may help personalize the treatment decisions.</p

    Shear Stress-mediated Angiogenesis Through Id1 Relevant to Atherosclerosis

    Get PDF
    Abnormal shear stress in the blood vessel is an important stimulating factor for the formation of angiogenesis and vulnerable plaques. This paper intended to explore the role of shear stress-regulated Id1 in angiogenesis. First, we applied a carotid artery ring ligation to create local stenosis in ApoE-/- mice. Then, 3D geometry of the vessel network was reconstructed based on MRI, and our analysis of computational fluid dynamics revealed that wall shear stress of the proximal region was much higher than that of the distal region. In addition, results from histological staining of the proximal region found more vulnerable-probe plaques with new capillary formation, the presence of macrophages and collagen fibers degradation. Our in vitro and in vivo experiments further indicated high shear stress can induce endothelial cell-mediated angiogenesis and high expression of Id1. Id1-overexpression promoted endothelial cells migration and angiogenesis through collagen degradation mediated by MT-MMPs. Together, our results support a biomechanical role for Id1 in angiogenesis, suggesting manipulation of the Id1 activity may offer a novel anti-angiogenic therapeutic strategy in vulnerable plaques

    Penetration of the blood-brain barrier and anti-tumor effect of a novel PLGA-lysoGM1/DOX micelles drug delivery system

    Get PDF
    Effective treatment of glioma and other central nervous system (CNS) diseases is hindered by the presence of the blood-brain barrier (BBB). A novel nano-delivery vehicle system comprised of PLGA-lysoGM1/DOX micelles was developed to across the BBB for CNS administration. We have shown that Doxorubicin (DOX) as a model drug encapsulated in PLGA-lysoGM1 micelles, can achieve up to 3.8% loading efficiency and 61.6% encapsulation efficiency by the orthogonal test design. Our in vitro experiments demonstrate that PLGA-lysoGM1/DOX micelles have a slow and sustainable drug release under physiological conditions and exhibit a high cellular uptake through the macropinocytosis and the autophagy/lysosomal pathways. In vivo experimental studies in zebrafish and mice confirmed that PLGA-lysoGM1/DOX micelles could across the BBB and specifically accumulated in the brain. Moreover, an excellent anti-glioma effect presented in intracranial glioma‐bearing rat. Therefore, PLGA-lysoGM1/DOX micelles not only effectively acrossed the BBB, but our results suggest it has a great potential for anti-glioma therapy and other central nervous system diseases
    corecore