19 research outputs found
Characterization of Voltage-Gated Ca2+ Conductances in Layer 5 Neocortical Pyramidal Neurons from Rats
Neuronal voltage-gated Ca2+ channels are involved in electrical signalling and in converting these signals into cytoplasmic calcium changes. One important function of voltage-gated Ca2+ channels is generating regenerative dendritic Ca2+ spikes. However, the Ca2+ dependent mechanisms used to create these spikes are only partially understood. To start investigating this mechanism, we set out to kinetically and pharmacologically identify the sub-types of somatic voltage-gated Ca2+ channels in pyramidal neurons from layer 5 of rat somatosensory cortex, using the nucleated configuration of the patch-clamp technique. The activation kinetics of the total Ba2+ current revealed conductance activation only at medium and high voltages suggesting that T-type calcium channels were not present in the patches. Steady-state inactivation protocols in combination with pharmacology revealed the expression of R-type channels. Furthermore, pharmacological experiments identified 5 voltage-gated Ca2+ channel sub-types – L-, N-, R- and P/Q-type. Finally, the activation of the Ca2+ conductances was examined using physiologically derived voltage-clamp protocols including a calcium spike protocol and a mock back-propagating action potential (mBPAP) protocol. These experiments enable us to suggest the possible contribution of the five Ca2+ channel sub-types to Ca2+ current flow during activation under physiological conditions
Quality of life and home enteral tube feeding: a French prospective study in patients with head and neck or oesophageal cancer
A prospective study was conducted to evaluate the impact of home enteral tube feeding on quality of life in 39 consecutive patients treated for head and neck or oesophageal cancer at the Centre François Baclesse in Caen, France. Patients were taken as their own controls. Quality of life was evaluated using the EORTC QLQ-C30 core questionnaire, and the EORTC H&N35 and OES24 specific questionnaires. The feeding technique tolerance was evaluated using a questionnaire specifically developed for this study. Two evaluations were made, the first a week after hospital discharge (n = 39) and the second 3 weeks later (n = 30). Overall, the global health status/quality of life scale score slightly improved; among symptoms, scale scores that significantly improved (P< 0.05) concerned constipation, coughing, social functioning and body image/sexuality. The physical feeding technique tolerance was acceptable while the technique was psychologically less tolerated with two-thirds of the patients longing to have the tube removed. Onethird of the patients was also uncomfortable about their body image. Home enteral tube feeding was responsible for not visiting family or close relations in 15% of patients, and not going out in public in 23%. We conclude that home enteral tube feeding is a physically well accepted technique although a substantial proportion of patients may experience psychosocial distress. © 2000 Cancer Research Campaig
Quality of Life in Long-Term Total Parenteral Nutrition Patients and Their Family Caregivers
Influence of Testosterone Metabolites on Song-Control System Neuroplasticity during Photostimulation in Adult European Starlings (Sturnus vulgaris)
Novel observations of Thiobacterium, a sulfur-storing Gammaproteobacterium producing gelatinous mats
The genus Thiobacterium includes uncultivated rod-shaped microbes containing several spherical grains of elemental sulfur and forming conspicuous gelatinous mats. Owing to the fragility of mats and cells, their 16S ribosomal RNA genes have not been phylogenetically classified. This study examined the occurrence of Thiobacterium mats in three different sulfidic marine habitats: a submerged whale bone, deep-water seafloor and a submarine cave. All three mats contained massive amounts of Thiobacterium cells and were highly enriched in sulfur. Microsensor measurements and other biogeochemistry data suggest chemoautotrophic growth of Thiobacterium. Sulfide and oxygen microprofiles confirmed the dependence of Thiobacterium on hydrogen sulfide as energy source. Fluorescence in situ hybridization indicated that Thiobacterium spp. belong to the Gammaproteobacteria, a class that harbors many mat-forming sulfide-oxidizing bacteria. Further phylogenetic characterization of the mats led to the discovery of an unexpected microbial diversity associated with Thiobacterium
