454 research outputs found
Removal of acid gases and oxides of nitrogen from space cabin atmospheres
Removal of acid gases and oxides of nitrogen from spacecraft cabin atmospheres at ambient temperature
The catalytic removal of ammonia and nitrogen oxides from spacecabin atmospheres
Investigations were made on methods for the removal of ammonia and to a lesser extent nitrogen oxides in low concentrations from air. The catalytic oxidation of ammonia was studied over a temperature range of 250 F to 600 F and a concentration range 20 ppm to 500 ppm. Of the catalysts studied, 0.5 percent ruthenium supported on alumina was found to be superior. This material is active at temperatures as low as 250 F and was found to produce much less nitrous oxide than the other two active catalysts, platinum on alumina and Hopcalite. A quantitative design model was developed which will permit the performance of an oxidizer to be calculated. The ruthenium was found to be relatively insensitive to low concentrations of water and to oxygen concentration between 21 percent and 100 percent. Hydrogen sulfide was found to be a poison when injected in relatively large quantities. The adsorption of ammonia by copper sulfate treated silica gel was investigated at temperatures of 72 F and 100 F. A quantitative model was developed for predicting adsorption bed behavior
Observation of anomalous spin-state segregation in a trapped ultra-cold vapor
We observe counter-intuitive spin segregation in an inhomogeneous sample of
ultra-cold, non-condensed Rubidium atoms in a magnetic trap. We use spatially
selective microwave spectroscopy to verify a model that accounts for the
differential forces on two internal spin states. In any simple understanding of
the cloud dynamics, the forces are far too small to account for the dramatic
transient spin polarizations observed. The underlying mechanism remains to be
elucidated.Comment: 5 pages, 3 figure
Optical Confinement of a Bose-Einstein Condensate
Bose-Einstein condensates of sodium atoms have been confined in an optical
dipole trap using a single focused infrared laser beam. This eliminates the
restrictions of magnetic traps for further studies of atom lasers and
Bose-Einstein condensates. More than five million condensed atoms were
transferred into the optical trap. Densities of up to of Bose condensed atoms were obtained, allowing for a measurement of
the three-body decay rate constant for sodium condensates as . At lower densities, the observed 1/e
lifetime was more than 10 sec. Simultaneous confinement of Bose-Einstein
condensates in several hyperfine states was demonstrated.Comment: 5 pages, 4 figure
Internal state conversion in ultracold gases
We consider an ultracold gas of (non-condensed) bosons or fermions with two
internal states, and study the effect of a gradient of the transition frequency
between these states. When a RF pulse is applied to the sample,
exchange effects during collisions transfer the atoms into internal states
which depend on the direction of their velocity. This results, after a short
time, in a spatial separation between the two states. A kinetic equation is
solved analytically and numerically; the results agree well with the recent
observations of Lewandowski et al.Comment: Accepted version, to appear in PR
On dynamic network entropy in cancer
The cellular phenotype is described by a complex network of molecular
interactions. Elucidating network properties that distinguish disease from the
healthy cellular state is therefore of critical importance for gaining
systems-level insights into disease mechanisms and ultimately for developing
improved therapies. By integrating gene expression data with a protein
interaction network to induce a stochastic dynamics on the network, we here
demonstrate that cancer cells are characterised by an increase in the dynamic
network entropy, compared to cells of normal physiology. Using a fundamental
relation between the macroscopic resilience of a dynamical system and the
uncertainty (entropy) in the underlying microscopic processes, we argue that
cancer cells will be more robust to random gene perturbations. In addition, we
formally demonstrate that gene expression differences between normal and cancer
tissue are anticorrelated with local dynamic entropy changes, thus providing a
systemic link between gene expression changes at the nodes and their local
network dynamics. In particular, we also find that genes which drive
cell-proliferation in cancer cells and which often encode oncogenes are
associated with reductions in the dynamic network entropy. In summary, our
results support the view that the observed increased robustness of cancer cells
to perturbation and therapy may be due to an increase in the dynamic network
entropy that allows cells to adapt to the new cellular stresses. Conversely,
genes that exhibit local flux entropy decreases in cancer may render cancer
cells more susceptible to targeted intervention and may therefore represent
promising drug targets.Comment: 10 pages, 3 figures, 4 tables. Submitte
THE ROLE OF INTERDEPENDENCE IN THE MICRO-FOUNDATIONS OF ORGANIZATION DESIGN: TASK, GOAL, AND KNOWLEDGE INTERDEPENDENCE
Interdependence is a core concept in organization design, yet one that has remained consistently understudied. Current notions of interdependence remain rooted in seminal works, produced at a time when managers’ near-perfect understanding of the task at hand drove the organization design process. In this context, task interdependence was rightly assumed to be exogenously determined by characteristics of the work and the technology. We no longer live in that world, yet our view of interdependence has remained exceedingly task-centric and our treatment of interdependence overly deterministic. As organizations face increasingly unpredictable workstreams and workers co-design the organization alongside managers, our field requires a more comprehensive toolbox that incorporates aspects of agent-based interdependence. In this paper, we synthesize research in organization design, organizational behavior, and other related literatures to examine three types of interdependence that characterize organizations’ workflows: task, goal, and knowledge interdependence. We offer clear definitions for each construct, analyze how each arises endogenously in the design process, explore their interrelations, and pose questions to guide future research
Software and Cyberinfrastructure for Astronomy III: The first SPIE software Hack Day
We report here on the software Hack Day organised at the 2014 SPIE conference on Astronomical Telescopes and Instrumentation in Montreal. The first ever Hack Day to take place at an SPIE event, the aim of the day was to bring together developers to collaborate on innovative solutions to problems of their choice. Such events have proliferated in the technology community, providing opportunities to showcase, share and learn skills. In academic environments, these events are often also instrumental in building community beyond the limits of national borders, institutions and projects. We show examples of projects the participants worked on, and provide some lessons learned for future events
The Eruption of the Candidate Young Star ASASSN-15qi
Outbursts on young stars are usually interpreted as accretion bursts caused by instabilities in the disk or the star-disk connection. However, some protostellar outbursts may not fit into this framework. In this paper, we analyze optical and near-infrared spectra and photometry to characterize the 2015 outburst of the probable young star ASASSN-15qi. The mag brightening in the band was sudden, with an unresolved rise time of less than one day. The outburst decayed exponentially by 1 mag for 6 days and then gradually back to the pre-outburst level after 200 days. The outburst is dominated by emission from K gas. An explosive release of energy accelerated matter from the star in all directions, seen in a spectacular cool, spherical wind with a maximum velocity of 1000 km/s. The wind and hot gas both disappeared as the outburst faded and the source the source returned to its quiescent F-star spectrum. Nebulosity near the star brightened with a delay of 10-20 days. Fluorescent excitation of H is detected in emission from vibrational levels as high as , also with a possible time delay in flux increase. The mid-infrared spectral energy distribution does not indicate the presence of warm dust emission, although the optical photospheric absorption and CO overtone emission could be related to a gaseous disk. Archival photometry reveals a prior outburst in 1976. Although we speculate about possible causes for this outburst, none of the explanations are compelling
- …
