1,368 research outputs found
Stabilisations, Crises and the "Exit" Problem - A Theoretical Model
Exchange-rate-based stabilisations, even if successful, usually lack credibility initially. This is reflected in high (ex post) real interest rates and some degree of real exchange rate appreciation. Empirical observation suggests that wage inflation declines smoothly over time whilst interest rates are volatile. We capture this by assuming that expectations are formed adaptively in labour markets, but rationally in financial markets. The model provides insights into: the eruption of exchange rate crises after a long period of apparently successful stabilisation; the potential advantages of a heterodox approach; when to delay a stabilisation attempt; and the optimal date for ''exit'' to a floating exchange rate.credibility, currency crisis, exchange rate, stabilisation, inflation reduction, adaptive expectations, rational expectations, real overvaluation effects
Dodecahedral topology fails to explain quadrupole-octupole alignment
The CMB quadrupole and octupole, as well as being weaker than expected, align
suspiciously well with each other. Non-trivial spatial topology can explain the
weakness. Might it also explain the alignment? The answer, at least in the case
of the Poincare dodecahedral space, is a resounding no.Comment: 5 pages, 1 figur
Chemie von alpha-Aminonitrilen. Aziridin-2-carbonitril, ein Vorläufer von rca-O3-Phosphoserinnitril und Glycolaldehyd-phosphat
Design improvement of circular molten carbonate fuel cell stack through CFD Analysis
Molten carbonate fuel cell (MCFC) is a promising technology for distributed power generation. The core of an MCFC power generation unit is the stack, where various fuel cells are connected together in series and parallel in order to obtain the desired voltage and power. Stack geometry and configuration are major engineering topics, as inhomogeneous temperature or mass fractions cause inefficient performances of the fuel cells, as efficiency and power smaller than the expected and shorter lifetime. A detailed model is a useful tool to improve stack performances, through design improvements. In this paper, a 3D model of a stack composed of 15 circular MCFC, considering heat, mass and current transfer as well as chemical and electrochemical reactions is presented. The model validation is conducted using some preliminary experimental data obtained for an MCFC stack developed in the Fabbricazioni Nucleari laboratories. These results are examined in order to improve the stack configuration. It is shown that power density may be increased of about 20% through double side feeding. In addition, the average temperature gradients in the axial direction are reduced of more than 70%. Significant reductions in the temperature gradients, especially in transversal direction, can be achieved by adjusting the mass flow rate of cathodic gas supplied to the various cell
Exact Polynomial Eigenmodes for Homogeneous Spherical 3-Manifolds
Observational data hints at a finite universe, with spherical manifolds such
as the Poincare dodecahedral space tentatively providing the best fit.
Simulating the physics of a model universe requires knowing the eigenmodes of
the Laplace operator on the space. The present article provides explicit
polynomial eigenmodes for all globally homogeneous 3-manifolds: the Poincare
dodecahedral space S3/I*, the binary octahedral space S3/O*, the binary
tetrahedral space S3/T*, the prism manifolds S3/D_m* and the lens spaces
L(p,1).Comment: v3. Final published version. 27 pages, 1 figur
CMB Anisotropy of Spherical Spaces
The first-year WMAP data taken at their face value hint that the Universe
might be slightly positively curved and therefore necessarily finite, since all
spherical (Clifford-Klein) space forms M^3 = S^3/Gamma, given by the quotient
of S^3 by a group Gamma of covering transformations, possess this property. We
examine the anisotropy of the cosmic microwave background (CMB) for all typical
groups Gamma corresponding to homogeneous universes. The CMB angular power
spectrum and the temperature correlation function are computed for the
homogeneous spaces as a function of the total energy density parameter
Omega_tot in the large range [1.01, 1.20] and are compared with the WMAP data.
We find that out of the infinitely many homogeneous spaces only the three
corresponding to the binary dihedral group T*, the binary octahedral group O*,
and the binary icosahedral group I* are in agreement with the WMAP
observations. Furthermore, if Omega_tot is restricted to the interval [1.00,
1.04], the space described by T* is excluded since it requires a value of
Omega_tot which is probably too large being in the range [1.06, 1.07]. We thus
conclude that there remain only the two homogeneous spherical spaces S^3/O* and
S^3/I* with Omega_tot of about 1.038 and 1.018, respectively, as possible
topologies for our Universe.Comment: A version with high resolution sky maps can be obtained at
http://www.physik.uni-ulm.de/theo/qc
- …
