43 research outputs found

    Seizure and cognitive outcomes after resection of glioneuronal tumors in children

    Get PDF
    Objective: Glioneuronal tumors (GNTs) are well‐recognized causes of chronic drug‐resistant focal epilepsy in children. Our practice involves an initial period of radiological surveillance and antiepileptic medications, with surgery being reserved for those with radiological progression or refractory seizures. We planned to analyze the group of patients with low‐grade GNTs, aiming to identify factors affecting seizure and cognitive outcomes. / Methods: We retrospectively reviewed the medical records of 150 children presenting to Great Ormond Street Hospital with seizures secondary to GNTs. Analysis of clinical, neuroimaging, neuropsychological, and surgical factors was performed to determine predictors of outcome. Seizure outcome at final follow‐up was classified as either seizure‐free (group A) or not seizure‐free (group B) for patients with at least 12‐months follow‐up postsurgery. Full‐scale intelligence quotient (FSIQ) was used as a measure of cognitive outcome. / Results: Eighty‐six males and 64 females were identified. Median presurgical FSIQ was 81. One hundred twenty‐one patients (80.5%) underwent surgery. Median follow‐up after surgery was 2 years, with 92 patients (76%) having at least 12 months of follow‐up after surgery. Seventy‐four patients (80%) were seizure‐free, and 18 (20%) continued to have seizures. Radiologically demonstrated complete tumor resection was associated with higher rates of seizure freedom (P = .026). Higher presurgical FSIQ was related to shorter epilepsy duration until surgery (P = .012) and to older age at seizure onset (P = .043). / Significance: A high proportion of children who present with epilepsy and GNTs go on to have surgical tumor resection with excellent postoperative seizure control. Complete resection is associated with a higher chance of seizure freedom. Higher presurgical cognitive functioning is associated with shorter duration of epilepsy prior to surgery and with older age at seizure onset. Given the high rate of eventual surgery, early surgical intervention should be considered in children with continuing seizures associated with GNTs

    The cranial nerves

    Get PDF
    With the exception of the olfactory and optic nerves, all cranial nerves enter or leave the brain stem. Three of the cranial nerves are purely sensory (I, II and VIII), five are motor (III, IV, VI, XI and XII) and the remaining nerves (V, VII, IX and X) are mixed. The olfactory nerve will be discussed in Chap. 14, the optic nerve in Chap. 8 and the cochlear nerve in Chap. 7. The nuclei of the cranial nerves are arranged in an orderly, more or less columnar fashion in the brain stem: motor nuclei, somatomotor, branchiomotor and visceromotor (parasympathetic), derived from the basal plate, are located medially, whereas sensory nuclei, somatosensory, viscerosensory and vestibulocochlear, derived from the alar plate, are found lateral to the sulcus limitans. The cranial nerves innervate structures in the head and neck as well as visceral organs in the thorax and abdomen. The cranial nerves control eye movements, mastication, vocalization, facial expression, respiration, heart rate and digestion. One or several of the cranial nerves are often involved in lesions of the brain stem, of which the location can usually be determined if the topographical anatomy of the cranial nerves and their nuclei is known. Several examples are shown in Clinical cases. Following a few notes on the development of the brain stem and congenital cranial dysinnervation disorders (Sect. 6.2), the following structures will be discussed: (1) ocular motor nerves and the effects of lesions of individual ocular motor nerves (Sect. 6.3); (2) eye movements and some disorders affecting them (Sect. 6.4); (3) the trigeminal nerve and changes in the blink reflex (Sect. 6.5); (4) the facial nerve and peripheral facial nerve paralysis (Sect. 6.6); (5) the gustatory system (Sect. 6.7); (6) the vestibulocochlear nerve, vestibular control and some peripheral and central vestibular syndromes (Sect. 6.8); and (7) the last four cranial nerves and some disorders affecting them (Sects. 6.9 and 6.10). The English terms of the Terminologia Neuroanatomica are used throughout.</p

    Model-based cross-correlation search for gravitational waves from the low-mass X-ray binary Scorpius X-1 in LIGO O3 data

    Get PDF
    We present the results of a model-based search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1 using LIGO detector data from the third observing run of Advanced LIGO, Advanced Virgo and KAGRA. This is a semicoherent search which uses details of the signal model to coherently combine data separated by less than a specified coherence time, which can be adjusted to balance sensitivity with computing cost. The search covered a range of gravitational-wave frequencies from 25Hz to 1600Hz, as well as ranges in orbital speed, frequency and phase determined from observational constraints. No significant detection candidates were found, and upper limits were set as a function of frequency. The most stringent limits, between 100Hz and 200Hz, correspond to an amplitude h0 of about 1e-25 when marginalized isotropically over the unknown inclination angle of the neutron star's rotation axis, or less than 4e-26 assuming the optimal orientation. The sensitivity of this search is now probing amplitudes predicted by models of torque balance equilibrium. For the usual conservative model assuming accretion at the surface of the neutron star, our isotropically-marginalized upper limits are close to the predicted amplitude from about 70Hz to 100Hz; the limits assuming the neutron star spin is aligned with the most likely orbital angular momentum are below the conservative torque balance predictions from 40Hz to 200Hz. Assuming a broader range of accretion models, our direct limits on gravitational-wave amplitude delve into the relevant parameter space over a wide range of frequencies, to 500Hz or more

    Search for continuous gravitational wave emission from the Milky Way center in O3 LIGO--Virgo data

    Get PDF
    We present a directed search for continuous gravitational wave (CW) signals emitted by spinning neutron stars located in the inner parsecs of the Galactic Center (GC). Compelling evidence for the presence of a numerous population of neutron stars has been reported in the literature, turning this region into a very interesting place to look for CWs. In this search, data from the full O3 LIGO--Virgo run in the detector frequency band [10,2000] Hz[10,2000]\rm~Hz have been used. No significant detection was found and 95%\% confidence level upper limits on the signal strain amplitude were computed, over the full search band, with the deepest limit of about 7.6×10267.6\times 10^{-26} at 142 Hz\simeq 142\rm~Hz. These results are significantly more constraining than those reported in previous searches. We use these limits to put constraints on the fiducial neutron star ellipticity and r-mode amplitude. These limits can be also translated into constraints in the black hole mass -- boson mass plane for a hypothetical population of boson clouds around spinning black holes located in the GC.Comment: 25 pages, 5 figure

    All-sky search for gravitational wave emission from scalar boson clouds around spinning black holes in LIGO O3 data

    Get PDF
    This paper describes the first all-sky search for long-duration, quasimonochromatic gravitational-wave signals emitted by ultralight scalar boson clouds around spinning black holes using data from the third observing run of Advanced LIGO. We analyze the frequency range from 20 to 610 Hz, over a small frequency derivative range around zero, and use multiple frequency resolutions to be robust towards possible signal frequency wanderings. Outliers from this search are followed up using two different methods, one more suitable for nearly monochromatic signals, and the other more robust towards frequency fluctuations. We do not find any evidence for such signals and set upper limits on the signal strain amplitude, the most stringent being ≈10−25 at around 130 Hz. We interpret these upper limits as both an “exclusion region” in the boson mass/black hole mass plane and the maximum detectable distance for a given boson mass, based on an assumption of the age of the black hole/boson cloud system

    Search for subsolar-mass binaries in the first half of Advanced LIGO’s and Advanced Virgo’s third observing run

    Get PDF
    We report on a search for compact binary coalescences where at least one binary component has a mass between 0.2 M_\odot and 1.0 M_\odot in Advanced LIGO and Advanced Virgo data collected between 1 April 2019 1500 UTC and 1 October 2019 1500 UTC. We extend previous analyses in two main ways: we include data from the Virgo detector and we allow for more unequal mass systems, with mass ratio q \geq 0.1. We do not report any gravitational-wave candidates. The most significant trigger has a false alarm rate of 0.14 \mathrm{yr}^-1. This implies an upper limit on the merger rate of subsolar binaries in the range [220–24200] \mathrm{Gpc}^{-3} \, \mathrm{yr}^{-1}, depending on the chirp mass of the binary. We use this upper limit to derive astrophysical constraints on two phenomenological models that could produce subsolar-mass compact objects. One is an isotropic distribution of equal-mass primordial black holes. Using this model, we find that the fraction of dark matter in primordial black holes is f_\mathrm{PBH}\equiv \Omega_\mathrm{PBH}/\Omega_\mathrm{DM}\lesssim 6\%. The other is a dissipative dark matter model, in which fermionic dark matter can collapse and form black holes. The upper limit on the fraction of dark matter black holes depends on the minimum mass of the black holes that can be formed: the most constraining result is obtained at M_\mathrm{min}=1 M_\odot, where f_\mathrm{DBH}\equiv \Omega_\mathrm{PBH}/\Omega_\mathrm{DM}\lesssim 0.003\%. These are the tightest limits on spinning subsolar-mass binaries to date

    Observation of gravitational waves from the coalescence of a 2.5–4.5 M ⊙ compact object and a neutron star

    Get PDF
    We report the observation of a coalescing compact binary with component masses 2.5–4.5 M ⊙ and 1.2–2.0 M ⊙ (all measurements quoted at the 90% credible level). The gravitational-wave signal GW230529_181500 was observed during the fourth observing run of the LIGO–Virgo–KAGRA detector network on 2023 May 29 by the LIGO Livingston observatory. The primary component of the source has a mass less than 5 M ⊙ at 99% credibility. We cannot definitively determine from gravitational-wave data alone whether either component of the source is a neutron star or a black hole. However, given existing estimates of the maximum neutron star mass, we find the most probable interpretation of the source to be the coalescence of a neutron star with a black hole that has a mass between the most massive neutron stars and the least massive black holes observed in the Galaxy. We provisionally estimate a merger rate density of 55−47+127Gpc−3yr−1 for compact binary coalescences with properties similar to the source of GW230529_181500; assuming that the source is a neutron star–black hole merger, GW230529_181500-like sources may make up the majority of neutron star–black hole coalescences. The discovery of this system implies an increase in the expected rate of neutron star–black hole mergers with electromagnetic counterparts and provides further evidence for compact objects existing within the purported lower mass gap
    corecore