4,434 research outputs found

    Quality Classified Image Analysis with Application to Face Detection and Recognition

    Full text link
    Motion blur, out of focus, insufficient spatial resolution, lossy compression and many other factors can all cause an image to have poor quality. However, image quality is a largely ignored issue in traditional pattern recognition literature. In this paper, we use face detection and recognition as case studies to show that image quality is an essential factor which will affect the performances of traditional algorithms. We demonstrated that it is not the image quality itself that is the most important, but rather the quality of the images in the training set should have similar quality as those in the testing set. To handle real-world application scenarios where images with different kinds and severities of degradation can be presented to the system, we have developed a quality classified image analysis framework to deal with images of mixed qualities adaptively. We use deep neural networks first to classify images based on their quality classes and then design a separate face detector and recognizer for images in each quality class. We will present experimental results to show that our quality classified framework can accurately classify images based on the type and severity of image degradations and can significantly boost the performances of state-of-the-art face detector and recognizer in dealing with image datasets containing mixed quality images.Comment: 6 page

    Mandarin speech perception in combined electric and acoustic stimulation.

    Get PDF
    For deaf individuals with residual low-frequency acoustic hearing, combined use of a cochlear implant (CI) and hearing aid (HA) typically provides better speech understanding than with either device alone. Because of coarse spectral resolution, CIs do not provide fundamental frequency (F0) information that contributes to understanding of tonal languages such as Mandarin Chinese. The HA can provide good representation of F0 and, depending on the range of aided acoustic hearing, first and second formant (F1 and F2) information. In this study, Mandarin tone, vowel, and consonant recognition in quiet and noise was measured in 12 adult Mandarin-speaking bimodal listeners with the CI-only and with the CI+HA. Tone recognition was significantly better with the CI+HA in noise, but not in quiet. Vowel recognition was significantly better with the CI+HA in quiet, but not in noise. There was no significant difference in consonant recognition between the CI-only and the CI+HA in quiet or in noise. There was a wide range in bimodal benefit, with improvements often greater than 20 percentage points in some tests and conditions. The bimodal benefit was compared to CI subjects' HA-aided pure-tone average (PTA) thresholds between 250 and 2000 Hz; subjects were divided into two groups: "better" PTA (<50 dB HL) or "poorer" PTA (>50 dB HL). The bimodal benefit differed significantly between groups only for consonant recognition. The bimodal benefit for tone recognition in quiet was significantly correlated with CI experience, suggesting that bimodal CI users learn to better combine low-frequency spectro-temporal information from acoustic hearing with temporal envelope information from electric hearing. Given the small number of subjects in this study (n = 12), further research with Chinese bimodal listeners may provide more information regarding the contribution of acoustic and electric hearing to tonal language perception

    Transcribing Content from Structural Images with Spotlight Mechanism

    Full text link
    Transcribing content from structural images, e.g., writing notes from music scores, is a challenging task as not only the content objects should be recognized, but the internal structure should also be preserved. Existing image recognition methods mainly work on images with simple content (e.g., text lines with characters), but are not capable to identify ones with more complex content (e.g., structured symbols), which often follow a fine-grained grammar. To this end, in this paper, we propose a hierarchical Spotlight Transcribing Network (STN) framework followed by a two-stage "where-to-what" solution. Specifically, we first decide "where-to-look" through a novel spotlight mechanism to focus on different areas of the original image following its structure. Then, we decide "what-to-write" by developing a GRU based network with the spotlight areas for transcribing the content accordingly. Moreover, we propose two implementations on the basis of STN, i.e., STNM and STNR, where the spotlight movement follows the Markov property and Recurrent modeling, respectively. We also design a reinforcement method to refine the framework by self-improving the spotlight mechanism. We conduct extensive experiments on many structural image datasets, where the results clearly demonstrate the effectiveness of STN framework.Comment: Accepted by KDD2018 Research Track. In proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'18

    Current-Induced Dynamics and Chaos of Antiferromagnetic Bimerons

    Full text link
    A magnetic bimeron is a topologically non-trivial spin texture carrying an integer topological charge, which can be regarded as the counterpart of skyrmion in easy-plane magnets. The controllable creation and manipulation of bimerons are crucial for practical applications based on topological spin textures. Here, we analytically and numerically study the dynamics of an antiferromagnetic bimeron driven by a spin current. Numerical simulations demonstrate that the spin current can create an isolated bimeron in the antiferromagnetic thin film via the damping-like spin torque. The spin current can also effectively drive the antiferromagnetic bimeron without a transverse drift. The steady motion of an antiferromagnetic bimeron is analytically derived and is in good agreement with the simulation results. Also, we find that the alternating-current-induced motion of the antiferromagnetic bimeron can be described by the Duffing equation due to the presence of the nonlinear boundary-induced force. The associated chaotic behavior of the bimeron is analyzed in terms of the Lyapunov exponents. Our results demonstrate the inertial dynamics of an antiferromagnetic bimeron, and may provide useful guidelines for building future bimeron-based spintronic devices.Comment: 6 pages, 4 figure
    corecore