20,216 research outputs found

    Research on Wireless Multi-hop Networks: Current State and Challenges

    Full text link
    Wireless multi-hop networks, in various forms and under various names, are being increasingly used in military and civilian applications. Studying connectivity and capacity of these networks is an important problem. The scaling behavior of connectivity and capacity when the network becomes sufficiently large is of particular interest. In this position paper, we briefly overview recent development and discuss research challenges and opportunities in the area, with a focus on the network connectivity.Comment: invited position paper to International Conference on Computing, Networking and Communications, Hawaii, USA, 201

    On the Quality of Wireless Network Connectivity

    Full text link
    Despite intensive research in the area of network connectivity, there is an important category of problems that remain unsolved: how to measure the quality of connectivity of a wireless multi-hop network which has a realistic number of nodes, not necessarily large enough to warrant the use of asymptotic analysis, and has unreliable connections, reflecting the inherent unreliable characteristics of wireless communications? The quality of connectivity measures how easily and reliably a packet sent by a node can reach another node. It complements the use of \emph{capacity} to measure the quality of a network in saturated traffic scenarios and provides a native measure of the quality of (end-to-end) network connections. In this paper, we explore the use of probabilistic connectivity matrix as a possible tool to measure the quality of network connectivity. Some interesting properties of the probabilistic connectivity matrix and their connections to the quality of connectivity are demonstrated. We argue that the largest eigenvalue of the probabilistic connectivity matrix can serve as a good measure of the quality of network connectivity.Comment: submitted to IEEE INFOCOM 201

    Economic MPC of Nonlinear Systems with Non-Monotonic Lyapunov Functions and Its Application to HVAC Control

    Full text link
    This paper proposes a Lyapunov-based economic MPC scheme for nonlinear sytems with non-monotonic Lyapunov functions. Relaxed Lyapunov-based constraints are used in the MPC formulation to improve the economic performance. These constraints will enforce a Lyapunov decrease after every few steps. Recursive feasibility and asymptotical convergence to the steady state can be achieved using Lyapunov-like stability analysis. The proposed economic MPC can be applied to minimize energy consumption in HVAC control of commercial buildings. The Lyapunov-based constraints in the online MPC problem enable the tracking of the desired set-point temperature. The performance is demonstrated by a virtual building composed of two adjacent zones
    corecore