169 research outputs found

    Byzantine Attack and Defense in Cognitive Radio Networks: A Survey

    Full text link
    The Byzantine attack in cooperative spectrum sensing (CSS), also known as the spectrum sensing data falsification (SSDF) attack in the literature, is one of the key adversaries to the success of cognitive radio networks (CRNs). In the past couple of years, the research on the Byzantine attack and defense strategies has gained worldwide increasing attention. In this paper, we provide a comprehensive survey and tutorial on the recent advances in the Byzantine attack and defense for CSS in CRNs. Specifically, we first briefly present the preliminaries of CSS for general readers, including signal detection techniques, hypothesis testing, and data fusion. Second, we analyze the spear and shield relation between Byzantine attack and defense from three aspects: the vulnerability of CSS to attack, the obstacles in CSS to defense, and the games between attack and defense. Then, we propose a taxonomy of the existing Byzantine attack behaviors and elaborate on the corresponding attack parameters, which determine where, who, how, and when to launch attacks. Next, from the perspectives of homogeneous or heterogeneous scenarios, we classify the existing defense algorithms, and provide an in-depth tutorial on the state-of-the-art Byzantine defense schemes, commonly known as robust or secure CSS in the literature. Furthermore, we highlight the unsolved research challenges and depict the future research directions.Comment: Accepted by IEEE Communications Surveys and Tutoiral

    Cellular-Base-Station Assisted Device-to-Device Communications in TV White Space

    Full text link
    This paper presents a systematic approach to exploit TV white space (TVWS) for device-to-device (D2D) communications with the aid of the existing cellular infrastructure. The goal is to build a location-specific TVWS database, which provides a look-up table service for any D2D link to determine its maximum permitted emission power (MPEP) in an unlicensed digital TV (DTV) band. To achieve this goal, the idea of mobile crowd sensing is firstly introduced to collect active spectrum measurements from massive personal mobile devices. Considering the incompleteness of crowd measurements, we formulate the problem of unknown measurements recovery as a matrix completion problem and apply a powerful fixed point continuation algorithm to reconstruct the unknown elements from the known elements. By joint exploitation of the big spectrum data in its vicinity, each cellular base station further implements a nonlinear support vector machine algorithm to perform irregular coverage boundary detection of a licensed DTV transmitter. With the knowledge of the detected coverage boundary, an opportunistic spatial reuse algorithm is developed for each D2D link to determine its MPEP. Simulation results show that the proposed approach can successfully enable D2D communications in TVWS while satisfying the interference constraint from the licensed DTV services. In addition, to our best knowledge, this is the first try to explore and exploit TVWS inside the DTV protection region resulted from the shadowing effect. Potential application scenarios include communications between internet of vehicles in the underground parking, D2D communications in hotspots such as subway, game stadiums, and airports, etc.Comment: Accepted by IEEE Journal on Selected Areas in Communications, to appear, 201

    Spectrum sharing and aggregation for future wireless networks, part II

    No full text
    The papers in this special issue represent the second one in the sequel of three special issues on spectrum sharing and aggregation for future wirelessn networks
    corecore