543 research outputs found
DeepICP: An End-to-End Deep Neural Network for 3D Point Cloud Registration
We present DeepICP - a novel end-to-end learning-based 3D point cloud
registration framework that achieves comparable registration accuracy to prior
state-of-the-art geometric methods. Different from other keypoint based methods
where a RANSAC procedure is usually needed, we implement the use of various
deep neural network structures to establish an end-to-end trainable network.
Our keypoint detector is trained through this end-to-end structure and enables
the system to avoid the inference of dynamic objects, leverages the help of
sufficiently salient features on stationary objects, and as a result, achieves
high robustness. Rather than searching the corresponding points among existing
points, the key contribution is that we innovatively generate them based on
learned matching probabilities among a group of candidates, which can boost the
registration accuracy. Our loss function incorporates both the local similarity
and the global geometric constraints to ensure all above network designs can
converge towards the right direction. We comprehensively validate the
effectiveness of our approach using both the KITTI dataset and the
Apollo-SouthBay dataset. Results demonstrate that our method achieves
comparable or better performance than the state-of-the-art geometry-based
methods. Detailed ablation and visualization analysis are included to further
illustrate the behavior and insights of our network. The low registration error
and high robustness of our method makes it attractive for substantial
applications relying on the point cloud registration task.Comment: 10 pages, 6 figures, 3 tables, typos corrected, experimental results
updated, accepted by ICCV 201
Genome-wide identification and characterization of a superfamily of bacterial extracellular contractile injection systems
Periostin identified as a potential biomarker of prostate cancer by iTRAQ-proteomics analysis of prostate biopsy
<p>Abstract</p> <p>Background</p> <p>Proteomics may help us better understand the changes of multiple proteins involved in oncogenesis and progression of prostate cancer(PCa) and identify more diagnostic and prognostic biomarkers. The aim of this study was to screen biomarkers of PCa by the proteomics analysis using isobaric tags for relative and absolute quantification(iTRAQ).</p> <p>Methods</p> <p>The patients undergoing prostate biopsies were classified into 3 groups according to pathological results: benign prostate hyperplasia (BPH, n = 20), PCa(n = 20) and BPH with local prostatic intraepithelial neoplasm(PIN, n = 10). Then, all the specimens from these patients were analyzed by iTRAQ and two-dimensional liquid chromatography-tandem mass spectrometry (2DLC-MS/MS). The Gene Ontology(GO) function and the transcription regulation networks of the differentially expressed were analyzed by MetaCore software. Western blotting and Immunohistochemical staining were used to analyze the interesting proteins.</p> <p>Result</p> <p>A total of 760 proteins were identified from 13787 distinct peptides, including two common proteins that enjoy clinical application: prostate specific antigen (PSA) and prostatic acid phosphatase(PAP). Proteins that expressed differentially between PCa and BPH group were further analyzed. Compared with BPH, 20 proteins were significantly differentially up-regulated (>1.5-fold) while 26 were significantly down-regulated in PCa(<0.66-fold). In term of GO database, the differentially expressed proteins were divided into 3 categories: cellular component(CC), molecular function (MF) and biological process(BP). The top 5 transcription regulation networks of the differentially expressed proteins were initiated through activation of SP1, p53, YY1, androgen receptor(AR) and c-Myc The overexpression of periostin in PCa was verified by western blotting and immunohistochemical staining.</p> <p>Conclusion</p> <p>Our study indicates that the iTRAQ technology is a new strategy for global proteomics analysis of the tissues of PCa. A significant up-regulation of periostin in PCa compared to BPH may provide clues for not only a promising biomarker for the prognosis of PCa but also a potential target for therapeutical intervention.</p
- …
