543 research outputs found

    DeepICP: An End-to-End Deep Neural Network for 3D Point Cloud Registration

    Full text link
    We present DeepICP - a novel end-to-end learning-based 3D point cloud registration framework that achieves comparable registration accuracy to prior state-of-the-art geometric methods. Different from other keypoint based methods where a RANSAC procedure is usually needed, we implement the use of various deep neural network structures to establish an end-to-end trainable network. Our keypoint detector is trained through this end-to-end structure and enables the system to avoid the inference of dynamic objects, leverages the help of sufficiently salient features on stationary objects, and as a result, achieves high robustness. Rather than searching the corresponding points among existing points, the key contribution is that we innovatively generate them based on learned matching probabilities among a group of candidates, which can boost the registration accuracy. Our loss function incorporates both the local similarity and the global geometric constraints to ensure all above network designs can converge towards the right direction. We comprehensively validate the effectiveness of our approach using both the KITTI dataset and the Apollo-SouthBay dataset. Results demonstrate that our method achieves comparable or better performance than the state-of-the-art geometry-based methods. Detailed ablation and visualization analysis are included to further illustrate the behavior and insights of our network. The low registration error and high robustness of our method makes it attractive for substantial applications relying on the point cloud registration task.Comment: 10 pages, 6 figures, 3 tables, typos corrected, experimental results updated, accepted by ICCV 201

    Periostin identified as a potential biomarker of prostate cancer by iTRAQ-proteomics analysis of prostate biopsy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Proteomics may help us better understand the changes of multiple proteins involved in oncogenesis and progression of prostate cancer(PCa) and identify more diagnostic and prognostic biomarkers. The aim of this study was to screen biomarkers of PCa by the proteomics analysis using isobaric tags for relative and absolute quantification(iTRAQ).</p> <p>Methods</p> <p>The patients undergoing prostate biopsies were classified into 3 groups according to pathological results: benign prostate hyperplasia (BPH, n = 20), PCa(n = 20) and BPH with local prostatic intraepithelial neoplasm(PIN, n = 10). Then, all the specimens from these patients were analyzed by iTRAQ and two-dimensional liquid chromatography-tandem mass spectrometry (2DLC-MS/MS). The Gene Ontology(GO) function and the transcription regulation networks of the differentially expressed were analyzed by MetaCore software. Western blotting and Immunohistochemical staining were used to analyze the interesting proteins.</p> <p>Result</p> <p>A total of 760 proteins were identified from 13787 distinct peptides, including two common proteins that enjoy clinical application: prostate specific antigen (PSA) and prostatic acid phosphatase(PAP). Proteins that expressed differentially between PCa and BPH group were further analyzed. Compared with BPH, 20 proteins were significantly differentially up-regulated (>1.5-fold) while 26 were significantly down-regulated in PCa(<0.66-fold). In term of GO database, the differentially expressed proteins were divided into 3 categories: cellular component(CC), molecular function (MF) and biological process(BP). The top 5 transcription regulation networks of the differentially expressed proteins were initiated through activation of SP1, p53, YY1, androgen receptor(AR) and c-Myc The overexpression of periostin in PCa was verified by western blotting and immunohistochemical staining.</p> <p>Conclusion</p> <p>Our study indicates that the iTRAQ technology is a new strategy for global proteomics analysis of the tissues of PCa. A significant up-regulation of periostin in PCa compared to BPH may provide clues for not only a promising biomarker for the prognosis of PCa but also a potential target for therapeutical intervention.</p
    corecore