60,180 research outputs found
Comparison of Canonical and Grand Canonical Models for selected multifragmentation data
Calculations for a set of nuclear multifragmentation data are made using a
Canonical and a Grand Canonical Model. The physics assumptions are identical
but the Canonical Model has an exact number of particles, whereas, the Grand
Canonical Model has a varying number of particles, hence, is less exact.
Interesting differences are found.Comment: 12 pages, Revtex, and 3 postscript figure
An Efficient Analytical Solution to Thwart DDoS Attacks in Public Domain
In this paper, an analytical model for DDoS attacks detection is proposed, in
which propagation of abrupt traffic changes inside public domain is monitored
to detect a wide range of DDoS attacks. Although, various statistical measures
can be used to construct profile of the traffic normally seen in the network to
identify anomalies whenever traffic goes out of profile, we have selected
volume and flow measure. Consideration of varying tolerance factors make
proposed detection system scalable to the varying network conditions and attack
loads in real time. NS-2 network simulator on Linux platform is used as
simulation testbed. Simulation results show that our proposed solution gives a
drastic improvement in terms of detection rate and false positive rate.
However, the mammoth volume generated by DDoS attacks pose the biggest
challenge in terms of memory and computational overheads as far as monitoring
and analysis of traffic at single point connecting victim is concerned. To
address this problem, a distributed cooperative technique is proposed that
distributes memory and computational overheads to all edge routers for
detecting a wide range of DDoS attacks at early stage.Comment: arXiv admin note: substantial text overlap with arXiv:1203.240
Specific heat at constant volume in the thermodynamic model
A thermodynamic model for multifragmentation which is frequently used appears
to give very different values for specific heat at constant volume depending
upon whether canonical or grand canonical ensemble is used. The cause for this
discrepancy is analysed.Comment: Revtex, 7 pages including 4 figure
Nanocrystallization and Amorphization Induced by Reactive Nitrogen Sputtering in Iron and Permalloy
Thin films of iron and permalloy Ni80Fe20 were prepared using an Ar+N2
mixture with magnetron sputtering technique at ambient temperature. The
nitrogen partial pressure, during sputtering process was varied in the range of
0 to 100%, keeping the total gas flow at constant. At lower nitrogen pressures
RN2<33% both Fe and NiFe, first form a nanocrystalline structure and an
increase in nitrogen partail pressure results in formation of an amorphous
structure. At intermediate nitrogen partial pressures, nitrides of Fe and NiFe
were obtained while at even higher nitrogen partial pressures, nitrides
themselves became nanocrystalline or amorphous. The surface, structural and
magnetic properties of the deposited films were studied using x-ray reflection
and diffraction, transmission electron microscopy, polarized neutron
reflectivity and using a DC extraction magnetometer. The growth behavior for
amorphous film was found different as compared with poly or nanocrystalline
films. The soft-magnetic properties of FeN were improved on nanocrystallization
while those of NiFeN were degraded. A mechanism inducing nanocrystallization
and amorphization in Fe and NiFe due to reactive nitrogen sputtering is
discussed in the present article.Comment: 13 Pages, 15 Figure
- …
