1,717 research outputs found
On the survivability and detectability of terrestrial meteorites on the moon
Materials blasted into space from the surface of early Earth may preserve a unique record of our planet's early surface environment. Armstrong et al. (2002) pointed out that such materials, in the form of terrestrial meteorites, may exist on the Moon and be of considerable astrobiological interest if biomarkers from early Earth are preserved within them. Here, we report results obtained via the AUTODYN hydrocode to calculate the peak pressures within terrestrial meteorites on the lunar surface to assess their likelihood of surviving the impact. Our results confirm the order-of-magnitude estimates of Armstrong et al. (2002) that substantial survivability is to be expected, especially in the case of relatively low velocity (ca. 2.5 km/s) or oblique (≤45°) impacts, or both. We outline possible mechanisms for locating such materials on the Moon and conclude that searching for them would be a scientifically valuable activity for future lunar exploration
Flux-lattice melting in two-dimensional disordered superconductors
The flux line lattice melting transition in two-dimensional pure and
disordered superconductors is studied by a Monte Carlo simulation using the
lowest Landau level approximation and quasi-periodic boundary condition on a
plane. The position of the melting line was determined from the diffraction
pattern of the superconducting order parameter. In the clean case we confirmed
the results from earlier studies which show the existence of a quasi-long range
ordered vortex lattice at low temperatures. Adding frozen disorder to the
system the melting transition line is shifted to slightly lower fields. The
correlations of the order parameter for translational long range order of the
vortex positions seem to decay slightly faster than a power law (in agreement
with the theory of Carpentier and Le Doussal) although a simple power law decay
cannot be excluded. The corresponding positional glass correlation function
decays as a power law establishing the existence of a quasi-long range ordered
positional glass formed by the vortices. The correlation function
characterizing a phase coherent vortex glass decays however exponentially
ruling out the possible existence of a phase coherent vortex glass phase.Comment: 12 pages, 21 figures, final version to appear in Phys. Rev.
Absolutely anticommuting (anti-)BRST symmetry transformations for topologically massive Abelian gauge theory
We demonstrate the existence of the nilpotent and absolutely anticommuting
Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations for the
four (3 + 1)-dimensional (4D) topologically massive Abelian U(1) gauge theory
that is described by the coupled Lagrangian densities (which incorporate the
celebrated (B \wedge F) term). The absolute anticommutativity of the (anti-)
BRST symmetry transformations is ensured by the existence of a Curci-Ferrari
type restriction that emerges from the superfield formalism as well as from the
equations of motion that are derived from the above coupled Lagrangian
densities. We show the invariance of the action from the point of view of the
symmetry considerations as well as superfield formulation. We discuss,
furthermore, the topological term within the framework of superfield formalism
and provide the geometrical meaning of its invariance under the (anti-) BRST
symmetry transformations.Comment: LaTeX file, 22 pages, journal versio
Frustrated two-dimensional Josephson junction array near incommensurability
To study the properties of frustrated two-dimensional Josephson junction
arrays near incommensurability, we examine the current-voltage characteristics
of a square proximity-coupled Josephson junction array at a sequence of
frustrations f=3/8, 8/21, 0.382 , 2/5, and 5/12.
Detailed scaling analyses of the current-voltage characteristics reveal
approximately universal scaling behaviors for f=3/8, 8/21, 0.382, and 2/5. The
approximately universal scaling behaviors and high superconducting transition
temperatures indicate that both the nature of the superconducting transition
and the vortex configuration near the transition at the high-order rational
frustrations f=3/8, 8/21, and 0.382 are similar to those at the nearby simple
frustration f=2/5. This finding suggests that the behaviors of Josephson
junction arrays in the wide range of frustrations might be understood from
those of a few simple rational frustrations.Comment: RevTex4, 4 pages, 4 eps figures, to appear in Phys. Rev.
Magnetic trapping of metastable atomic strontium
We report the magnetic trapping of metastable atomic strontium. Atoms
are cooled in a magneto-optical trap (MOT) operating on the dipole allowed
transition at 461 nm. Decay via
continuously loads a magnetic trap formed by the quadrupole magnetic field of
the MOT. Over atoms at a density of cm and
temperature of 1 mK are trapped. The atom temperature is significantly lower
than what would be expected from the kinetic and potential energy of atoms as
they are transferred from the MOT. This suggests that thermalization and
evaporative cooling are occurring in the magnetic trap.Comment: This paper has been accepted by PR
Para to Ortho transition of metallic dimers on Si(001)
Extensive electronic structure calculations are performed to obtain the
stable geometries of metals like Al, Ga and In on the Si(001) surface at 0.5 ML
and 1 ML coverages. Our results coupled with previous theoretical findings
explain the recent experimental data in a comprehensive fashion. At low
coverages, as shown by previous works, `Para' dimers give the lowest energy
structure. With increasing coverage beyond 0.5 ML, `Ortho' dimers become part
of low energy configurations leading toward a `Para' to `Ortho' transition at 1
ML coverage. For In mixed staggered dimers (`Ortho' and `Para') give the lowest
energy configuration. For Ga, mixed dimers are non-staggered, while for Al
`Para' to `Ortho' transition of dimers is complete. Thus at intermediate
coverages between 0.5 and 1 ML, the `Ortho' and `Para' dimers may coexist on
the surface. Consequently, this may be an explanation of the fact that the
experimental observations can be successfully interpreted using either
orientation. A supported zigzag structure at 0.5 ML, which resembles , does not undergo a dimerization transition, and hence stays
semi-metallic. Also, unlike the soliton formation is ruled out
for this structure.Comment: 8 pages, 6 figure
Abelian 2-form gauge theory: superfield formalism
We derive the off-shell nilpotent Becchi-Rouet-Stora-Tyutin (BRST) and
anti-BRST symmetry transformations for {\it all} the fields of a free Abelian
2-form gauge theory by exploiting the geometrical superfield approach to BRST
formalism. The above four (3 + 1)-dimensional (4D) theory is considered on a
(4, 2)-dimensional supermanifold parameterized by the four even spacetime
variables x^\mu (with \mu = 0, 1, 2, 3) and a pair of odd Grassmannian
variables \theta and \bar\theta (with \theta^2 = \bar\theta^2 = 0, \theta
\bar\theta + \bar\theta \theta = 0). One of the salient features of our present
investigation is that the above nilpotent (anti-)BRST symmetry transformations
turn out to be absolutely anticommuting due to the presence of a Curci-Ferrari
(CF) type of restriction. The latter condition emerges due to the application
of our present superfield formalism. The actual CF condition, as is well-known,
is the hallmark of a 4D non-Abelian 1-form gauge theory. We demonstrate that
our present 4D Abelian 2-form gauge theory imbibes some of the key signatures
of the 4D non-Abelian 1-form gauge theory. We briefly comment on the
generalization of our supperfield approach to the case of Abelian 3-form gauge
theory in four (3 + 1)-dimensions of spacetime.Comment: LaTeX file, 23 pages, journal versio
A segment-swapping approach for executing trapped computations
We consider the problem of supporting goal-level, independent andparallelism (IAP) in the presence of non-determinism. IAP is exploited when two or more goals which will not interfere at run time are scheduled for simultaneous execution. Backtracking over non-deterministic parallel goals runs into the wellknown trapped goal and garbage slot problems. The proposed solutions for these problems generally require complex low-level machinery which makes systems difficult to maintain and extend, and in some cases can even affect sequential execution performance. In this paper we propose a novel solution to the problem of trapped nondeterministic goals and garbage slots which is based on a single stack reordering operation and offers several advantages over previous proposals. While
the implementation of this operation itself is not simple, in return it does not impose constraints on the scheduler. As a result, the scheduler and the rest of the run-time machinery can safely ignore the trapped goal and garbage slot problems and their implementation is greatly simplified. Also, standard sequential execution remains unaffected. In addition to describing the solution we report on an implementation and provide performance results. We also suggest other possible applications of the proposed approach beyond parallel execution
Work function changes in the double layered manganite La1.2Sr1.8Mn2O7
We have investigated the behaviour of the work function of La1.2Sr1.8Mn2O7 as
a function of temperature by means of photoemission. We found a decrease of 55
+/- 10 meV in going from 60 K to just above the Curie temperature (125 K) of
the sample. Above T_C the work function appears to be roughly constant. Our
results are exactly opposite to the work function changes calculated from the
double-exchange model by Furukawa, but are consistent with other measurements.
The disagreement with double-exchange can be explained using a general
thermodynamic relation valid for second order transitions and including the
extra processes involved in the manganites besides double-exchange interaction.Comment: 6 pages, 4 figures included in tex
The spread of epidemic disease on networks
The study of social networks, and in particular the spread of disease on
networks, has attracted considerable recent attention in the physics community.
In this paper, we show that a large class of standard epidemiological models,
the so-called susceptible/infective/removed (SIR) models can be solved exactly
on a wide variety of networks. In addition to the standard but unrealistic case
of fixed infectiveness time and fixed and uncorrelated probability of
transmission between all pairs of individuals, we solve cases in which times
and probabilities are non-uniform and correlated. We also consider one simple
case of an epidemic in a structured population, that of a sexually transmitted
disease in a population divided into men and women. We confirm the correctness
of our exact solutions with numerical simulations of SIR epidemics on networks.Comment: 12 pages, 3 figure
- …
