82,356 research outputs found
Sequence-based Anytime Control
We present two related anytime algorithms for control of nonlinear systems
when the processing resources available are time-varying. The basic idea is to
calculate tentative control input sequences for as many time steps into the
future as allowed by the available processing resources at every time step.
This serves to compensate for the time steps when the processor is not
available to perform any control calculations. Using a stochastic Lyapunov
function based approach, we analyze the stability of the resulting closed loop
system for the cases when the processor availability can be modeled as an
independent and identically distributed sequence and via an underlying Markov
chain. Numerical simulations indicate that the increase in performance due to
the proposed algorithms can be significant.Comment: 14 page
Obtaining pressure versus concentration phase diagrams in spin systems from Monte Carlo simulations
We propose an efficient procedure for determining phase diagrams of systems
that are described by spin models. It consists of combining cluster algorithms
with the method proposed by Sauerwein and de Oliveira where the grand canonical
potential is obtained directly from the Monte Carlo simulation, without the
necessity of performing numerical integrations. The cluster algorithm presented
in this paper eliminates metastability in first order phase transitions
allowing us to locate precisely the first-order transitions lines. We also
produce a different technique for calculating the thermodynamic limit of
quantities such as the magnetization whose infinite volume limit is not
straightforward in first order phase transitions. As an application, we study
the Andelman model for Langmuir monolayers made of chiral molecules that is
equivalent to the Blume-Emery-Griffiths spin-1 model. We have obtained the
phase diagrams in the case where the intermolecular forces favor interactions
between enantiomers of the same type (homochiral interactions). In particular,
we have determined diagrams in the surface pressure versus concentration plane
which are more relevant from the experimental point of view and less usual in
numerical studies
Reactor for simulation and acceleration of solar ultraviolet damage
An environmental test chamber providing acceleration of UV radiation and precise temperature control (+ or -)1 C was designed, constructed and tested. This chamber allows acceleration of solar ultraviolet up to 30 suns while maintaining temperature of the absorbing surface at 30 C - 60 C. This test chamber utilizes a filtered medium pressure mercury arc as the source of radiation, and a combination of selenium radiometer and silicon radiometer to monitor solar ultraviolet (295-340 nm) and total radiant power output, respectively. Details of design and construction and operational procedures are presented along with typical test data
Weighted Density Approximation Description of Insulating YH and LaH
Density functional calculations within the weighted density approximation
(WDA) are presented for YH and LaH. We investigate some commonly used
pair-distribution functions G. These calculations show that within a consistent
density functional framework a substantial insulating gap can be obtained while
at the same time retaining structural properties in accord with experimental
data. Our WDA band structures agree with those of approximation very well,
but the calculated band gaps are still 1.0-2.0 eV smaller than experimental
findings.Comment: 6 Pages, 3 figure
Gaugomaly Mediation Revisited
Most generic models of hidden sector supersymmetry breaking do not feature
singlets, and gauginos obtain masses from anomaly mediated supersymmetry
breaking. If one desires a natural model, then the dominant contribution to
scalar masses should be of the same order, i.e. also from AMSB. However, pure
AMSB models suffer from the tachyonic slepton problem. Moreover, there is a
large splitting between the gluino and the wino LSP masses resulting in tight
exclusion limits from typical superpartner searches. We introduce messenger
fields into this framework to obtain a hybrid theory of gauge and anomaly
mediation, solving both problems simultaneously. Specifically, we find any
number of vector-like messenger fields (allowed by GUT unification) compress
the predicted gaugino spectrum when their masses come from the Giudice-Masiero
mechanism. This more compressed spectrum is less constrained by LHC searches
and allows for lighter gluinos. In addition to the model, we present gaugino
pole mass equations that differ from (and correct) the original literature
Viscoelastic Multicomponent Fluids in confined Flow-Focusing Devices
The effects of elasticity on the break-up of liquid threads in microfluidic
cross-junctions is investigated using numerical simulations based on the
"lattice Boltzmann models" (LBM). Working at small Capillary numbers, we
investigate the effects of non-Newtonian phases in the transition from droplet
formation at the cross-junction (DCJ) and droplet formation downstream of the
cross-junction (DC) (Liu & Zhang, , 082101
(2011)). Viscoelasticity is found to influence the break-up point of the
threads, which moves closer to the cross-junction and stabilizes. This is
attributed to an increase of the polymer feedback stress forming in the corner
flows, where the side channels of the device meet the main channel.Comment: 4 pages, 2 figures, AIP Conference Proceedings, 201
Forecasting the South African Economy: A DSGE-VAR Approach
Journal of Economic Literature Classification: E17, E27, E32, E37, E47DSGE Model;VAR and BVAR Model;Forecast Accuracy;DSGE Forecasts;VAR Forecasts;BVAR Forecasts
Anytime Control using Input Sequences with Markovian Processor Availability
We study an anytime control algorithm for situations where the processing
resources available for control are time-varying in an a priori unknown
fashion. Thus, at times, processing resources are insufficient to calculate
control inputs. To address this issue, the algorithm calculates sequences of
tentative future control inputs whenever possible, which are then buffered for
possible future use. We assume that the processor availability is correlated so
that the number of control inputs calculated at any time step is described by a
Markov chain. Using a Lyapunov function based approach we derive sufficient
conditions for stochastic stability of the closed loop.Comment: IEEE Transactions on Automatic Control, to be publishe
- …
