61,232 research outputs found
Contact and crack problems for an elastic wedge
The contact and the crack problems for an elastic wedge of arbitrary angle are considered. The problem is reduced to a singular integral equation which, in the general case, may have a generalized Cauchy kernel. The singularities under the stamp as well as at the wedge apex were studied, and the relevant stress intensity factors are defined. The problem was solved for various wedge geometries and loading conditions. The results may be applicable to certain foundation problems and to crack problems in symmetrically loaded wedges in which cracks initiate from the apex
Effect of Muons on the Phase Transition in Magnetised Proto-Neutron Star Matter
We study the effect of inclusion of muons and the muon neutrinos on the phase
transition from nuclear to quark matter in a magnetised proto-neutron star and
compare our results with those obtained by us without the muons. We find that
the inclusion of muons changes slightly the nuclear density at which transition
occurs.However the dependence of this transition density on various chemical
potentials, temperature and the magnetic field remains quantitatively the same.Comment: LaTex2e file with four postscript figure
Activation of additional energy dissipation processes in the magnetization dynamics of epitaxial chromium dioxide films
The precessional magnetization dynamics of a chromium dioxide film is
examined in an all-optical pump-probe setup. The frequency dependence on the
external field is used to extract the uniaxial in-plane anisotropy constant.
The damping shows a strong dependence on the frequency, but also on the laser
pump fluency, which is revealed as an important experiment parameter in this
work: above a certain threshold further channels of energy dissipation open and
the damping increases discontinuously. This behavior might stem from spin-wave
instabilities
Structural studies of phosphorus induced dimers on Si(001)
Renewed focus on the P-Si system due to its potential application in quantum
computing and self-directed growth of molecular wires, has led us to study
structural changes induced by P upon placement on Si(001)-. Using
first-principles density functional theory (DFT) based pseudopotential method,
we have performed calculations for P-Si(001) system, starting from an isolated
P atom on the surface, and systematically increasing the coverage up to a full
monolayer. An isolated P atom can favorably be placed on an {\bf M} site
between two atoms of adjacent Si dimers belonging to the same Si dimer row. But
being incorporated in the surface is even more energetically beneficial due to
the participation of the {\bf M} site as a receptor for the ejected Si. Our
calculations show that up to 1/8 monolayer coverage, hetero-dimer structure
resulting from replacement of surface Si atoms with P is energetically
favorable. Recently observed zig-zag features in STM are found to be consistent
with this replacement process. As coverage increases, the hetero-dimers give
way to P-P ortho-dimers on the Si dimer rows. This behavior is similar to that
of Si-Si d-dimers but are to be contrasted with the Al-Al dimers, which are
found between adjacent Si dimers rows and in a para-dimer arrangement. Unlike
Al-Si system P-Si does not show any para to ortho transition. For both systems,
the surface reconstruction is lifted at about one monolayer coverage. These
calculations help us in understanding the experimental data obtained using
scanning tunneling microscope.Comment: To appear in PR
RF and IF mixer optimum matching impedances extracted by large-signal vectorial measurements
This paper introduces a new technique that allows us to measure the admittance conversion matrix of a two-port device,using a Nonlinear Vector Network Analyzer.This method is applied to extract the conversion matrix of a 0.2 µµµµm pHEMT,driven by a 4.8 GHz pump signal,at different power levels,using an intermediate frequency of 600 MHz.The issue on data inconsistency due to phase randomization among different measurements is discussed and a proper pre- processing algorithm is proposed to fix the problem. The output of this work consists of a comprehensive experimental evaluation of up-and down-conversion maximum gain,stability,and optimal RF and IF impedances
Detecting cold gas at intermediate redshifts: GMRT survey using Mg II systems
Intervening HI 21-cm absorption systems at z > 1.0 are very rare and only 4
confirmed detections have been reported in the literature. Despite their
scarcity, they provide interesting and unique insights into the physical
conditions in the interstellar medium of high-z galaxies. Moreover, they can
provide independent constraints on the variation of fundamental constants. We
report 3 new detections based on our ongoing Giant Metrewave Radio Telescope
(GMRT) survey for 21-cm absorbers at 1.10< z_abs< 1.45 from candidate damped
Lyman_alpha systems. The 21-cm lines are narrow for the z_abs = 1.3710 system
towards SDSS J0108-0037 and z_abs = 1.1726 system toward SDSS J2358-1020. Based
on line full-width at half maximum, the kinetic temperatures are <= 5200 K and
<=800 K, respectively. The 21-cm absorption profile of the third system, z_abs
=1.1908 system towards SDSS J0804+3012, is shallow, broad and complex,
extending up to 100 km/s. The centroids of the 21-cm lines are found to be
shifted with respect to the corresponding centroids of the metal lines derived
from SDSS spectra. This may mean that the 21-cm absorption is not associated
with the strongest metal line component.Comment: 13 pages with 5 figures. Accepted for publication in ApJ
A new microscopic nucleon-nucleon interaction derived from relativistic mean field theory
A new microscopic nucleon-nucleon (NN) interaction has been derived for the
first time from the popular relativistic mean field theory (RMFT) Lagrangian.
The NN interaction so obtained remarkably relate to the inbuilt fundamental
parameters of RMFT. Furthermore, by folding it with the RMFT-densities of
cluster and daughter nuclei to obtain the optical potential, it's application
is also examined to study the exotic cluster radioactive decays, and results
obtained found comparable with the successfully used M3Y phenomenological
effective NN interactions. The presently derived NN-interaction can also be
used to calculate a number of other nuclear observables.Comment: 4 Pages 2 Figure
Magnetization and EPR studies of the single molecule magnet Ni with integrated sensors
Integrated magnetic sensors that allow simultaneous EPR and magnetization
measurements have been developed to study single molecule magnets. A high
frequency microstrip resonator has been integrated with a micro-Hall effect
magnetometer. EPR spectroscopy is used to determine the energy splitting
between the low lying spin-states of a Ni single crystal, with an S=4
ground state, as a function of applied fields, both longitudinal and transverse
to the easy axis at 0.4 K. Concurrent magnetization measurements show changes
in spin-population associated with microwave absorption. Such studies enable
determination of the energy relaxation time of the spin system.Comment: 4 pages, 4 figures, accepted for publication (Proceedings of the 10th
Joint MMM/Intermag Conference, which will be published as special issues of
the Journal of Applied Physics
- …
