2,990 research outputs found
Zero field spin splitting in AlSb/InAs/AlSb quantum wells induced by surface proximity effects
InAs quantum well heterostructures are of considerable interest for
mesoscopic device applications such as scanning probe and magnetic recording
sensors, which require the channel to be close to the surface. Here we report
on magnetotransport measurements of AlSb/InAs/AlSb Hall bars at a shallow depth
of 20 nm. Analysis of the observed Shubnikov-de Haas oscillations and modeling
show that spin splitting energies in excess of 2.3 meV occur at zero magnetic
field. We conclude that the spin-splitting results from the Rashba effect due
to the band bending in the quantum well. This is caused by substantial electron
transfer from the surface to the quantum well and becomes significant when the
quantum well is located near the surface.Comment: 14 pages, 2 figures. (To be published in APL
Estimating water flow through a hillslope using the massively parallel processor
A new two-dimensional model of water flow in a hillslope has been implemented on the Massively Parallel Processor at the Goddard Space Flight Center. Flow in the soil both in the saturated and unsaturated zones, evaporation and overland flow are all modelled, and the rainfall rates are allowed to vary spatially. Previous models of this type had always been very limited computationally. This model takes less than a minute to model all the components of the hillslope water flow for a day. The model can now be used in sensitivity studies to specify which measurements should be taken and how accurate they should be to describe such flows for environmental studies
Tuning Fano-type resonances in coupled quantum point contacts by applying asymmetric voltages
We study the ballistic magnetotransport in a double quantum point contact
(QPC) device consisting of a quasi-one-dimensional quantum wire with an
embedded island-like impurity - etched nano-hole as in a recently published
experiment [J. C. Chen, Y. Lin, K.-T. Lin, T. Ueda and S. Komiyama, Appl. Phys.
Lett. 94, 012105 (2009)]. We reproduce the zero field quantized conductance,
the interference phenomenon induced by the coupled QPCs, as well as the
Ramsauer-like resonances observed in the experiments. At finite magnetic fields
Fano-type resonances arises in the conductance due to the formation of
localized states at the impurity periphery and to an inter-edge state resonant
coupling effect. It is predicted that the Fano-type resonances can be
controlled by an asymmetric confinement of the QPCs.Comment: published in AP
Programming a hillslope water movement model on the MPP
A physically based numerical model was developed of heat and moisture flow within a hillslope on a parallel architecture computer, as a precursor to a model of a complete catchment. Moisture flow within a catchment includes evaporation, overland flow, flow in unsaturated soil, and flow in saturated soil. Because of the empirical evidence that moisture flow in unsaturated soil is mainly in the vertical direction, flow in the unsaturated zone can be modeled as a series of one dimensional columns. This initial version of the hillslope model includes evaporation and a single column of one dimensional unsaturated zone flow. This case has already been solved on an IBM 3081 computer and is now being applied to the massively parallel processor architecture so as to make the extension to the one dimensional case easier and to check the problems and benefits of using a parallel architecture machine
A Model for an Angular Velocity-Tuned Motion Detector Accounting for Deviations in the Corridor-Centering Response of the Bee
We present a novel neurally based model for estimating angular velocity (AV) in the bee brain, capable of quantitatively reproducing experimental observations of visual odometry and corridor-centering in free-flying honeybees, including previously unaccounted for manipulations of behaviour. The model is fitted using electrophysiological data, and tested using behavioural data. Based on our model we suggest that the AV response can be considered as an evolutionary extension to the optomotor response. The detector is tested behaviourally in silico with the corridor-centering paradigm, where bees navigate down a corridor with gratings (square wave or sinusoidal) on the walls. When combined with an existing flight control algorithm the detector reproduces the invariance of the average flight path to the spatial frequency and contrast of the gratings, including deviations from perfect centering behaviour as found in the real bee's behaviour. In addition, the summed response of the detector to a unit distance movement along the corridor is constant for a large range of grating spatial frequencies, demonstrating that the detector can be used as a visual odometer
An Inexpensive Flying Robot Design for Embodied Robotics Research
Flying insects are capable of a wide-range of flight and cognitive behaviors which are not currently understood. The replication of these capabilities is of interest to miniaturized robotics, because they share similar size, weight, and energy constraints. Currently, embodiment of insect behavior is primarily done on ground robots which utilize simplistic sensors and have different constraints to flying insects. This limits how much progress can be made on understanding how biological systems fundamentally work. To address this gap, we have developed an inexpensive robotic solution in the form of a quadcopter aptly named BeeBot. Our work shows that BeeBot can support the necessary payload to replicate the sensing capabilities which are vital to bees' flight navigation, including chemical sensing and a wide visual field-of-view. BeeBot is controlled wirelessly in order to process this sensor data off-board; for example, in neural networks. Our results demonstrate the suitability of the proposed approach for further study of the development of navigation algorithms and of embodiment of insect cognition
Spatiotemporal complexity of a ratio-dependent predator-prey system
In this paper, we investigate the emergence of a ratio-dependent
predator-prey system with Michaelis-Menten-type functional response and
reaction-diffusion. We derive the conditions for Hopf, Turing and Wave
bifurcation on a spatial domain. Furthermore, we present a theoretical analysis
of evolutionary processes that involves organisms distribution and their
interaction of spatially distributed population with local diffusion. The
results of numerical simulations reveal that the typical dynamics of population
density variation is the formation of isolated groups, i.e., stripelike or
spotted or coexistence of both. Our study shows that the spatially extended
model has not only more complex dynamic patterns in the space, but also chaos
and spiral waves. It may help us better understand the dynamics of an aquatic
community in a real marine environment.Comment: 6pages, revtex
Critical view of WKB decay widths
A detailed comparison of the expressions for the decay widths obtained within
the semiclassical WKB approximation using different approaches to the tunneling
problem is performed. The differences between the available improved formulae
for tunneling near the top and the bottom of the barrier are investigated.
Though the simple WKB method gives the right order of magnitude of the decay
widths, a small number of parameters are often fitted. The need to perform the
fitting procedure remaining consistently within the WKB framework is emphasized
in the context of the fission model based calculations. Calculations for the
decay widths of some recently found super heavy nuclei using microscopic
alpha-nucleus potentials are presented to demonstrate the importance of a
consistent WKB calculation. The half-lives are found to be sensitive to the
density dependence of the nucleon-nucleon interaction and the implementation of
the Bohr-Sommerfeld quantization condition inherent in the WKB approach.Comment: 18 pages, Late
Chaos induced coherence in two independent food chains
Coherence evolution of two food web models can be obtained under the stirring
effect of chaotic advection. Each food web model sustains a three--level
trophic system composed of interacting predators, consumers and vegetation.
These populations compete for a common limiting resource in open flows with
chaotic advection dynamics. Here we show that two species (the top--predators)
of different colonies chaotically advected by a jet--like flow can synchronize
their evolution even without migration interaction. The evolution is
charaterized as a phase synchronization. The phase differences (determined
through the Hilbert transform) of the variables representing those species show
a coherent evolution.Comment: 5 pages, 5 eps figures. Accepted for publication in Phys. Rev.
- …
