1,003 research outputs found

    Three-dimensional molecular dynamics simulations of void coalescence during dynamic fracture of ductile metals

    Full text link
    Void coalescence and interaction in dynamic fracture of ductile metals have been investigated using three-dimensional strain-controlled multi-million atom molecular dynamics simulations of copper. The correlated growth of two voids during the coalescence process leading to fracture is investigated, both in terms of its onset and the ensuing dynamical interactions. Void interactions are quantified through the rate of reduction of the distance between the voids, through the correlated directional growth of the voids, and through correlated shape evolution of the voids. The critical inter-void ligament distance marking the onset of coalescence is shown to be approximately one void radius based on the quantification measurements used, independent of the initial separation distance between the voids and the strain-rate of the expansion of the system. The interaction of the voids is not reflected in the volumetric asymptotic growth rate of the voids, as demonstrated here. Finally, the practice of using a single void and periodic boundary conditions to study coalescence is examined critically and shown to produce results markedly different than the coalescence of a pair of isolated voids.Comment: Accepted for publication in Physical Review

    A General Solution to the Aircraft Trim Problem

    Get PDF
    Trim defines conditions for both design and analysis based on aircraft models. In fact, we often define these analysis points more broadly than the conditions normally associated with trim conditions to facilitate that analysis or design. In simulations, these analysis points establish initial conditions comparable to flight conditions. Based on aerodynamic and propulsion systems models of an aircraft, trim analysis can be used to provide the data needed to define the operating envelope or the performance characteristics. Linear models are typically derived at trim points. Control systems are designed and evaluated at points defined by trim conditions. And these trim conditions provide us a starting point for comparing one model against another, one implementation of a model against another implementation of the same model, and the model to flight-derived data. In this paper we define what we mean by trim, examine a variety of trim conditions that have proved useful and derive the equations defining those trim conditions. Finally we present a general approach to trim through constrained minimization of a cost function based on the nonlinear, six-degree-of freedom state equations coupled with the aerodynamic and propulsion system models. We provide an example of how a trim algorithm is used with a simulation by showing an example from JSBSim

    Modelling of ductile fracture in single point incremental forming using a modified GTN model

    Get PDF
    Understanding the deformation and failure mechanisms in single point incremental forming (SPIF) is of great importance for achieving improved formability. Furthermore, there will be added benefits for more in depth evaluation of the effect of localised deformation to the fracture mechanism in SPIF. Although extensive research has been carried out in recent years, questions still remain on the shear and particularly its effect to the formability in SPIF processes. In this work, a modified Gurson–Tvergaard-Needleman (GTN) damage model was developed with the consideration of shear to predict ductile fracture in the SPIF process due to void nucleation and coalescence with results compared with original GTN model in SPIF. A combined approach of experimental testing and SPIF processing was used to validate finite element results of the shear modified Gurson–Tvergaard-Needleman damage model. The results showed that the shear modified GTN model improved the modelling accuracy of fracture over the original GTN model under shear loading conditions. Furthermore, the shear plays a role under meridional tensile stress to accelerate fracture propagation in SPIF processes

    Effect of stress-triaxiality on void growth in dynamic fracture of metals: a molecular dynamics study

    Full text link
    The effect of stress-triaxiality on growth of a void in a three dimensional single-crystal face-centered-cubic (FCC) lattice has been studied. Molecular dynamics (MD) simulations using an embedded-atom (EAM) potential for copper have been performed at room temperature and using strain controlling with high strain rates ranging from 10^7/sec to 10^10/sec. Strain-rates of these magnitudes can be studied experimentally, e.g. using shock waves induced by laser ablation. Void growth has been simulated in three different conditions, namely uniaxial, biaxial, and triaxial expansion. The response of the system in the three cases have been compared in terms of the void growth rate, the detailed void shape evolution, and the stress-strain behavior including the development of plastic strain. Also macroscopic observables as plastic work and porosity have been computed from the atomistic level. The stress thresholds for void growth are found to be comparable with spall strength values determined by dynamic fracture experiments. The conventional macroscopic assumption that the mean plastic strain results from the growth of the void is validated. The evolution of the system in the uniaxial case is found to exhibit four different regimes: elastic expansion; plastic yielding, when the mean stress is nearly constant, but the stress-triaxiality increases rapidly together with exponential growth of the void; saturation of the stress-triaxiality; and finally the failure.Comment: 35 figures, which are small (and blurry) due to the space limitations; submitted (with original figures) to Physical Review B. Final versio

    Unusual plastic deformation and damage features in Titanium: experimental tests and constitutive modeling

    Get PDF
    In this paper, we present an experimental study on plastic deformation and damage of polycrystalline pure Ti, as well as modeling of the observed behavior. From the mechanical characterization data, it can be concluded that the material displays anisotropy and tension-compression asymmetry. As concerns damage, the X-ray tomography measurements conducted reveal that damage distribution and evolution in this HCP Ti material is markedly different than in a typical FCC material such as copper. Stewart and Cazacu (2011) anisotropic elastic/plastic damage model is used to describe the behavior. All material parameters involved in this model have a clear physical significance, being related to plastic properties, and are determined based on very few simple mechanical tests. It is shown that this model predicts correctly the anisotropy in plastic deformation, and its strong influence on damage distribution and damage accumulation in Ti. Specifically, for a smooth axisymmetric specimen subject to uniaxial tension, damage initiates at the center of the specimen and is diffuse; the level of damage close to failure is very low. On the other hand, for a notched specimen subject to the same loading, the model predicts that damage initiates at the outer surface of the specimen, and further grows from the outer surface to the center of the specimen, which corroborates with the in-situ tomography data.info:eu-repo/semantics/publishedVersio

    FRACTURE ASSESSMENT OF DUCTILE CRACK GROWTH IN WELD MATERIAL FROM A FULL-THICKNESS CLAD RPV SHELL SEGMENT

    Get PDF
    Recent studies indicate that the onset of stable ductile tearing leads to crack-tip fields ahead of the growing crack and crack-tip profiles that differ from those of a stationary crack. Stable ductile tearing exposes additional volumes of material to elevated stresses as the crack advances, which alters the sampling of potential cleavage initiation sites on the microstructural level. Also, measured cleavage fracture toughness values for these specimens will be influenced by changes in crack-tip constraint conditions that occur with prior stable crack growth. Fracture analysis techniques for inclusion of ductile crack growth in finite-element analyses were evaluated through applications to a full-thickness clad beam specimen containing a shallow crack in material for which metallurgical conditions are prototypic of those found in reactor pressure vessels (RPVs) at beginning of life. The beam specimen, which experienced a significant amount of precleavage stable ductile tearing, was fabricated from a section of an RPV wall (removed from a canceled nuclear plant) that includes weld, plate, and clad material. Effects of precleavage tearing on estimates of fracture toughness were investigated using continuum damage models

    Intellectual capital in organizations

    Get PDF

    Variational Foundations and Generalized Unified Theory of RVE-Based Multiscale Models

    Get PDF
    A unified variational theory is proposed for a general class of multiscale models based on the concept of Representative Volume Element. The entire theory lies on three fundamental principles: (1) kinematical admissibility, whereby the macro- and micro-scale kinematics are defined and linked in a physically meaningful way; (2) duality, through which the natures of the force- and stress-like quantities are uniquely identified as the duals (power-conjugates) of the adopted kinematical variables; and (3) the Principle of Multiscale Virtual Power, a generalization of the well-known Hill-Mandel Principle of Macrohomogeneity, from which equilibrium equations and homogenization relations for the force- and stress-like quantities are unequivocally obtained by straightforward variational arguments. The proposed theory provides a clear, logically-structured framework within which existing formulations can be rationally justified and new, more general multiscale models can be rigorously derived in well-defined steps. Its generality allows the treatment of problems involving phenomena as diverse as dynamics, higher order strain effects, material failure with kinematical discontinuities, fluid mechanics and coupled multi-physics. This is illustrated in a number of examples where a range of models is systematically derived by following the same steps. Due to the variational basis of the theory, the format in which derived models are presented is naturally well suited for discretization by finite element-based or related methods of numerical approximation. Numerical examples illustrate the use of resulting models, including a non-conventional failure-oriented model with discontinuous kinematics, in practical computations
    corecore