164 research outputs found
Lignin biomarkers as tracers of mercury sources in lakes water column
This study presents the role of specific terrigenous organic compounds as important vectors of mercury (Hg) transported from watersheds to lakes of the Canadian boreal forest. In order to differentiate the autochthonous from the allochthonous organic matter (OM), lignin derived biomarker signatures [Lambda, S/V, C/V, P/(V ? S), 3,5-Bd/V and (Ad/Al)v] were used. Since lignin is exclusively produced by terrigenous plants, this approach can give a non equivocal picture of the watershed inputs to the lakes. Moreover, it allows a characterization of the source of OM and its state of degradation. The water column of six lakes from the Canadian Shield was sampled monthly between June and September 2005. Lake total dissolved Hg concentrations and Lambda were positively correlated, meaning that Hg and ligneous inputs are linked (dissolved OM r2 = 0.62, p\0.0001; particulate OM r2 = 0.76, p\0.0001). Ratios of P/(V ? S) and 3,5-Bd/V from both dissolved OM and particulate OM of the water column suggest an inverse relationship between the progressive state of pedogenesis and maturation of the OM in soil before entering the lake, and the Hg concentrations in the water column. No relation was found between Hg levels in the lakes and the watershed flora composition—angiosperm versus gymnosperm or woody versus non-woody compounds. This study has significant implications for watershed management of ecosystems since limiting fresh terrestrial OM inputs should reduce Hg inputs to the aquatic systems. This is particularly the case for largescale land-use impacts, such as deforestation, agriculture and urbanization, associated to large quantities of soil OM being transferred to aquatic systems
Identifying Pathway Proteins in Networks using Convergence
One of the key goals of systems biology concerns the analysis of experimental biological data available to the scientific public. New technologies are rapidly developed to observe and report whole-scale biological phenomena; however, few methods exist with the ability to produce specific, testable hypotheses from this noisy ‘big’ data. In this work, we propose an approach that combines the power of data-driven network theory along with knowledge-based ontology to tackle this problem. Network models are especially powerful due to their ability to display elements of interest and their relationships as internetwork structures. Additionally, ontological data actually supplements the confidence of relationships within the model without clouding critical structure identification. As such, we postulate that given a (gene/protein) marker set of interest, we can systematically identify the core of their interactions (if they are indeed working together toward a biological function), via elimination of original markers and addition of additional necessary markers. This concept, which we refer to as “convergence,” harnesses the idea of “guilt-by-association” and recursion to identify whether a core of relationships exists between markers. In this study, we test graph theoretic concepts such as shortest-path, k-Nearest- Neighbor and clustering) to identify cores iteratively in data- and knowledge-based networks in the canonical yeast Pheromone Mating Response pathway. Additionally, we provide results for convergence application in virus infection, hearing loss, and Parkinson’s disease. Our results indicate that if a marker set has common discrete function, this approach is able to identify that function, its interacting markers, and any new elements necessary to complete the structural core of that function. The result below find that the shortest path function is the best approach of those used, finding small target sets that contain a majority or all of the markers in the gold standard pathway. The power of this approach lies in its ability to be used in investigative studies to inform decisions concerning target selection
Efficacy and safety of medicines targeting neurotrophic factors in the management of low back pain: Protocol for a systematic review and meta-analysis
Background: Low back pain (LBP) is the leading cause of years lived with disability worldwide. Most people with LBP receive the diagnosis of nonspecific LBP or sciatica. Medications are commonly prescribed but have limited analgesic effects and are associated with adverse events. A novel treatment approach is to target neurotrophins such as nerve growth factor (NGF) to reduce pain intensity. NGF inhibitors have been tested in some randomized controlled trials (RCTs) in recent years, showing promise for the treatment of chronic LBP; however, their efficacy and safety need to be evaluated to guide regulatory actions. Objective: The aim of this study is to evaluate the efficacy and safety of medicines targeting neurotrophins in patients with LBP and sciatica. Methods: In this systematic review, we will include published and unpublished records of parallel RCTs and the first phase of crossover RCTs that compare the effects of medicines targeting neurotrophins with any control group. We will search the CENTRAL, MEDLINE, Embase, CINAHL, ClinicalTrials.gov, EU Clinical Trials Register, and WHO International Clinical Registry Platform databases from inception. Pairs of authors will independently screen the records for eligibility, and we will independently extract data in duplicate. We will conduct a quantitative synthesis (meta-analysis) with the studies that report sufficient data and compare the medicines of interest versus placebo. We will use random-effects models and calculate estimates of effects and heterogeneity for each outcome. We will assess the risk of bias for each study using the Cochrane Collaboration tool, and form judgments of confidence in the evidence according to GRADE recommendations. We will use the PRISMA statement to report the findings. We plan to conduct subgroup analyses by condition, type of medication, and time point. We will also assess the impact of a potential new trial on an existing meta-analysis. Data from studies that meet inclusion criteria but cannot be included in the meta-analysis will be reported narratively. Results: The protocol was registered on the Open Science Framework on May 19, 2020. As of December 2020, we have identified 1932 records. Conclusions: This systematic review and meta-analysis will assess the evidence for the efficacy and safety of NGF inhibitors for pain in patients with nonspecific LBP and sciatica. The inclusion of new studies and unpublished data may improve the precision of the effect estimates and guide regulatory actions of the medications for LBP and sciatica
Thermosensitivity of the Saccharomyces cerevisiae gpp1gpp2 double deletion strain can be reduced by overexpression of genes involved in cell wall maintenance
A Saccharomyces cerevisiae strain in which the GPP1 and GPP2 genes, both encoding glycerol-3-phosphate phosphatase isoforms, are deleted, displays both osmo- and thermosensitive (ts) phenotypes. We isolated genes involved in cell wall maintenance as multicopy suppressors of the gpp1gpp2 ts phenotype. We found that the gpp1gpp2 strain is hypersensitive to cell wall stress such as treatment with β-1,3-glucanase containing cocktail Zymolyase and chitin-binding dye Calcofluor-white (CFW). Sensitivity to Zymolyase was rescued by overexpression of SSD1, while CFW sensitivity was rescued by SSD1, FLO8 and WSC3-genes isolated as multicopy suppressors of the gpp1gpp2 ts phenotype. Some of the isolated suppressor genes (SSD1, FLO8) also rescued the lytic phenotype of slt2 deletion strain. Additionally, the sensitivity to CFW was reduced when the cells were supplied with glycerol. Both growth on glycerol-based medium and overexpression of SSD1, FLO8 or WSC3 had additive suppressing effect on CFW sensitivity of the gpp1gpp2 mutant strain. We also confirmed that the internal glycerol level changed in cells exposed to cell wall perturbation. © 2007 Springer-Verlag
Targeting neurotrophic factors for low back pain and sciatica: A systematic review and meta-analysis
Objectives: This meta-analysis aims to investigate the efficacy and safety of medicines that target neurotrophic factors for low back pain (LBP) or sciatica. Methods: We searched published and trial registry reports of randomized controlled trials evaluating the effect of medicines that target neurotrophic factors to LBP or sciatica in seven databases from inception to December 2020. Two reviewers independently identified studies, extracted data, and assessed the risk of bias and certainty in the evidence. Results: Nine studies (3370 participants) were included in the meta-analyses. Low certainty evidence showed that anti-nerve growth factor (NGF) may reduce pain at 4 weeks (mean difference [MD] -6.75, 95% CI: -8.61, -4.90) and 12 weeks (MD -6.16, 95% CI: -8.38, -3.94), and may increase adverse effects for chronic LBP (odds ratio [OR] 1.18, 95% CI: 1.01, 1.38). Higher doses of anti-NGF may offer a clinically important reduction in pain at the cost of increased adverse effects for chronic LBP. Very low certainty evidence showed that anti-NGF and glial cell line-derived neurotrophic factor (pro-GDNF) may not reduce pain for sciatica at 4 weeks (MD -1.40, 95% CI: -8.26, 5.46), at 12 weeks (MD -2.91, 95% CI: -13.69, 7.67) and may increase adverse effects for sciatica (OR 3.27, 95% CI: 1.78, 6.00). Conclusion: Anti-NGF may offer small reductions in pain intensity for chronic LBP. The effect may depend on the dose and types of medicines. For sciatica, anti-NGF or pro-GDNF may not reduce pain. Medicines that target neurotrophic factors for LBP or sciatica are associated with different adverse effects compared to those observed in commonly prescribed medicines for these conditions
Efficacy, acceptability, and safety of muscle relaxants for adults with non-specific low back pain: Systematic review and meta-analysis
AbstractObjective To investigate the efficacy, acceptability, and safety of muscle relaxants for low back pain. Design Systematic review and meta-analysis of randomised controlled trials. Data sources Medline, Embase, CINAHL, CENTRAL, ClinicalTrials.gov, clinicialtrialsregister.eu, and WHO ICTRP from inception to 23 February 2021. Eligibility criteria for study selection Randomised controlled trials of muscle relaxants compared with placebo, usual care, waiting list, or no treatment in adults (≥18 years) reporting non-specific low back pain. Data extraction and synthesis Two reviewers independently identified studies, extracted data, and assessed the risk of bias and certainty of the evidence using the Cochrane risk-of-bias tool and Grading of Recommendations, Assessment, Development and Evaluations, respectively. Random effects meta-analytical models through restricted maximum likelihood estimation were used to estimate pooled effects and corresponding 95% confidence intervals. Outcomes included pain intensity (measured on a 0-100 point scale), disability (0-100 point scale), acceptability (discontinuation of the drug for any reason during treatment), and safety (adverse events, serious adverse events, and number of participants who withdrew from the trial because of an adverse event). Results 49 trials were included in the review, of which 31, sampling 6505 participants, were quantitatively analysed. For acute low back pain, very low certainty evidence showed that at two weeks or less non-benzodiazepine antispasmodics were associated with a reduction in pain intensity compared with control (mean difference -7.7, 95% confidence interval-12.1 to-3.3) but not a reduction in disability (-3.3, -7.3 to 0.7). Low and very low certainty evidence showed that non-benzodiazepine antispasmodics might increase the risk of an adverse event (relative risk 1.6, 1.2 to 2.0) and might have little to no effect on acceptability (0.8, 0.6 to 1.1) compared with control for acute low back pain, respectively. The number of trials investigating other muscle relaxants and different durations of low back pain were small and the certainty of evidence was reduced because most trials were at high risk of bias. Conclusions Considerable uncertainty exists about the clinical efficacy and safety of muscle relaxants. Very low and low certainty evidence shows that non-benzodiazepine antispasmodics might provide small but not clinically important reductions in pain intensity at or before two weeks and might increase the risk of an adverse event in acute low back pain, respectively. Large, high quality, placebo controlled trials are urgently needed to resolve uncertainty. Systematic review registration PROSPERO CRD42019126820 and Open Science Framework https://osf.io/mu2f5/
Comparative effectiveness and safety of analgesic medicines for adults with non-specific acute low back pain: systematic review and network meta-analysis
Objective To evaluate the comparative effectiveness and safety of analgesic medicines for acute non-specific low back pain.
Design Systematic review and network meta-analysis.
Data sources Medline, PubMed, Embase, CINAHL, CENTRAL, ClinicalTrials.gov, clinicialtrialsregister.eu, and World Health Organization’s International Clinical Trials Registry Platform from database inception to 20 February 2022.
Eligibility criteria for study selection Randomised controlled trials of analgesic medicines (eg, non-steroidal anti-inflammatory drugs, paracetamol, opioids, anti-convulsant drugs, skeletal muscle relaxants, or corticosteroids) compared with another analgesic medicine, placebo, or no treatment. Adults (≥18 years) who reported acute non-specific low back pain (for less than six weeks).
Data extraction and synthesis Primary outcomes were low back pain intensity (0-100 scale) at end of treatment and safety (number of participants who reported any adverse event during treatment). Secondary outcomes were low back specific function, serious adverse events, and discontinuation from treatment. Two reviewers independently identified studies, extracted data, and assessed risk of bias. A random effects network meta-analysis was done and confidence was evaluated by the Confidence in Network Meta-Analysis method.
Results 98 randomised controlled trials (15 134 participants, 49% women) included 69 different medicines or combinations. Low or very low confidence was noted in evidence for reduced pain intensity after treatment with tolperisone (mean difference −26.1 (95% confidence intervals −34.0 to −18.2)), aceclofenac plus tizanidine (−26.1 (−38.5 to −13.6)), pregabalin (−24.7 (−34.6 to −14.7)), and 14 other medicines compared with placebo. Low or very low confidence was noted for no difference between the effects of several of these medicines. Increased adverse events had moderate to very low confidence with tramadol (risk ratio 2.6 (95% confidence interval 1.5 to 4.5)), paracetamol plus sustained release tramadol (2.4 (1.5 to 3.8)), baclofen (2.3 (1.5 to 3.4)), and paracetamol plus tramadol (2.1 (1.3 to 3.4)) compared with placebo. These medicines could increase the risk of adverse events compared with other medicines with moderate to low confidence. Moderate to low confidence was also noted for secondary outcomes and secondary analysis of medicine classes.
Conclusions The comparative effectiveness and safety of analgesic medicines for acute non-specific low back pain are uncertain. Until higher quality randomised controlled trials of head-to-head comparisons are published, clinicians and patients are recommended to take a cautious approach to manage acute non-specific low back pain with analgesic medicines.MAW was supported by a Postgraduate Scholarship from the National Health and Medical Research Council of Australia, a School of Medical Sciences Top-Up Scholarship from the University of New South Wales, and a PhD Supplementary Scholarship from Neuroscience Research Australia. MKB was supported by a PhD Candidature Scholarship and Supplementary Scholarship from Neuroscience Research Australia. MCF was supported by an Australian Government Research Training Program Scholarship, a PhD Supplementary Scholarship from Neuroscience Research Australia, and the Edward C Dunn Foundation Scholarship. RRNR was supported by the School of Medical Sciences Postgraduate Research Scholarship from the University of New South Wales and a PhD Supplementary Scholarship from Neuroscience Research Australia. HBL was supported by an Australian Government Research Training Program Scholarship. SSh was supported by the International Association for the Study of Pain John J Bonica Postdoctoral Fellowship. CGM was supported by an NHMRC Leadership 3 Fellowship (App 1194283). SMG was supported by a Research Fellowship from the Rebecca L Cooper Foundation. AN was supported by personal fellowship (P400PM_186723) from the Swiss National Science Foundation. This study received project support funding from a 2020 Exercise Physiology Research (Consumables) Grant from the University of New South Wales, which was used to obtain translations of studies published in languages other than English. The funder had played no part in the design, conduct, or analysis of the study
Comparative effectiveness and safety of analgesic medicines for adults with acute non-specific low back pain: systematic review and network meta-analysis
Objective: To evaluate the comparative effectiveness and safety of analgesic medicines for acute non-specific low back pain. Design: Systematic review and network meta-analysis. Data sources: Medline, PubMed, Embase, CINAHL, CENTRAL, ClinicalTrials.gov, clinicialtrialsregister.eu, and World Health Organization's International Clinical Trials Registry Platform from database inception to 20 February 2022. Eligibility criteria for study selection: Randomised controlled trials of analgesic medicines (eg, non-steroidal anti-inflammatory drugs, paracetamol, opioids, anti-convulsant drugs, skeletal muscle relaxants, or corticosteroids) compared with another analgesic medicine, placebo, or no treatment. Adults (≥18 years) who reported acute non-specific low back pain (for less than six weeks). Data extraction and synthesis: Primary outcomes were low back pain intensity (0-100 scale) at end of treatment and safety (number of participants who reported any adverse event during treatment). Secondary outcomes were low back specific function, serious adverse events, and discontinuation from treatment. Two reviewers independently identified studies, extracted data, and assessed risk of bias. A random effects network meta-analysis was done and confidence was evaluated by the Confidence in Network Meta-Analysis method. Results: 98 randomised controlled trials (15 134 participants, 49% women) included 69 different medicines or combinations. Low or very low confidence was noted in evidence for reduced pain intensity after treatment with tolperisone (mean difference -26.1 (95% confidence intervals -34.0 to -18.2)), aceclofenac plus tizanidine (-26.1 (-38.5 to -13.6)), pregabalin (-24.7 (-34.6 to -14.7)), and 14 other medicines compared with placebo. Low or very low confidence was noted for no difference between the effects of several of these medicines. Increased adverse events had moderate to very low confidence with tramadol (risk ratio 2.6 (95% confidence interval 1.5 to 4.5)), paracetamol plus sustained release tramadol (2.4 (1.5 to 3.8)), baclofen (2.3 (1.5 to 3.4)), and paracetamol plus tramadol (2.1 (1.3 to 3.4)) compared with placebo. These medicines could increase the risk of adverse events compared with other medicines with moderate to low confidence. Moderate to low confidence was also noted for secondary outcomes and secondary analysis of medicine classes. Conclusions: The comparative effectiveness and safety of analgesic medicines for acute non-specific low back pain are uncertain. Until higher quality randomised controlled trials of head-to-head comparisons are published, clinicians and patients are recommended to take a cautious approach to manage acute non-specific low back pain with analgesic medicines. Systematic review registration: PROSPERO CRD4201914525
A modelling approach to quantify dynamic crosstalk between the pheromone and the starvation pathway in baker's yeast
Cells must be able to process multiple information in parallel and, moreover, they must also be able to combine this information in order to trigger the appropriate response. This is achieved by wiring signalling pathways such that they can interact with each other, a phenomenon often called crosstalk. In this study, we employ mathematical modelling techniques to analyse dynamic mechanisms and measures of crosstalk. We present a dynamic mathematical model that compiles current knowledge about the wiring of the pheromone pathway and the filamentous growth pathway in yeast. We consider the main dynamic features and the interconnections between the two pathways in order to study dynamic crosstalk between these two pathways in haploid cells. We introduce two new measures of dynamic crosstalk, the intrinsic specificity and the extrinsic specificity. These two measures incorporate the combined signal of several stimuli being present simultaneously and seem to be more stable than previous measures. When both pathways are responsive and stimulated, the model predicts that (a) the filamentous growth pathway amplifies the response of the pheromone pathway, and (b) the pheromone pathway inhibits the response of filamentous growth pathway in terms of mitogen activated protein kinase activity and transcriptional activity, respectively. Among several mechanisms we identified leakage of activated Ste11 as the most influential source of crosstalk. Moreover, we propose new experiments and predict their outcomes in order to test hypotheses about the mechanisms of crosstalk between the two pathways. Studying signals that are transmitted in parallel gives us new insights about how pathways and signals interact in a dynamical way, e.g., whether they amplify, inhibit, delay or accelerate each other
- …
